PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.06.003

WAYS TO INCREASE THE RATE OF CURRENT RISE IN THE LOAD OF ELECTRIC DISCHARGE INSTALLATIONS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2017 (November/December)
Pages 3– 10

 

Authors
A.A. Shcherba*, N.I. Suprunovska**, V.K. Synytsyn
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-0200-369X
** ORCID ID : http://orcid.org/0000-0001-7499-9142

 

Abstract

On the basis of transient analysis of the oscillatory and aperiodic discharges of the reservoir capacitor of electric discharge installations on the load, it is shown that an increase in its capacitance reduces the duration of the rise of the discharge current from zero to any fixed value less than the maximum value of the current. Based on this, it is proposed the method for increasing the rate of rise of pulsed currents in the load, which is founded on increasing the capacity of the discharged capacitor and forced interrupting the current in the load when a specified fixed value (or duration) of the current is reached. Forced limitation of the discharge duration is carried out by a fully controlled semiconductor key. This is the actual method, in particular in electric discharge installations for the production of dispersed electro-eroded powders, since it allows to reduce their sizes. Two ways to implement the method are offered. References 14, figures 3, table 1.

 

Key words: transient, discharge pulse, capacity of capacitor, rate of current rise.

 

Received:    11.05.2017
Accepted:    24.05.2017
Published:   30.10.2017

 

References

1. Vovchenko A.I., Tertilov R.V. Synthesis of capacitive non-linear- parametrical energy sources for discharge-pulse technologies. Zbirnyk naukovykh prats Natsionalnoho universytetu korablebuduvannia. 2010. No 4. Pp. 118–124. (Rus)
2. Zakharchenko S.N., Kondratenko I.P., Perekos A.Ye., Zalytsky V.P., Kozyrsky V.V., Lopatko K.G. Influence of duration of discharge pulses in a layer of iron granules on the sizes and a structurally-phase state of its electro-eroded particles. Vostochno-Evropeiskii Zhurnal peredovykh tekhnologii. 2012. Vol. 6. No 5 (60). Pp. 66–72. (Rus)
3. Kravchenko V.I., Petkov A.A. Parametrical synthesis of high-voltage pulse test device with capacitive energy storage. Electrical engineering & Elektromechanics. 2007. No 6. Pp. 70–75. (Rus)
4. Krug K.A. Basis of electrical engineering. Moskva-Leningrad: Gosenergoizdat, 1946. 472 p. (Rus)
5. Suprunovska N.I., Shcherba A.A., Ivashchenko D.S., Beletsky O.A. Prosesses of energy exchange between nonlinear and linear links of electric equivalent circuit of supercapacitors. Tekhnichna Elektrodynamika. 2015. No 5. Pp. 3–11. (Rus)
6. Shcherba A.A., Suprunovska N.I. Increasing regularities of rate of current rise in the load at limiting its maximal values. Tekhnichna Elektrodynamika. 2012. No 5. Pp. 3–9. (Rus)
7. Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Modeling of Nonlinerial Resistance of Electro-Spark Load Taking into Account its Changes During Discharge Current Flowing in the Load and et Zero Current in it. Tekhnichna Elektrodynamika. 2014. No 5. Pp. 23–25. (Rus)
8. Casanueva R., Azcondo F.J., Branas C., Bracho S. Analysis, design and experimental results of a high-frequency power supply for spark erosion. IEEE Transactions on Power Electronics. 2005. Vol. 20. Pp. 361–369. DOI https://doi.org/10.1109/TPEL.2004.842992
9. Mysinski W. Power supply unit for an electric discharge machine. 13th European Conference on Power Electronics and Applications, EPE '09, 1–3 Sept., 2009, Poznan, Poland. Pp. 1–7.
10. Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark Erosion: a High Production Rate Method for Producing Bi0.5Sb1.5Te3 Nanoparticles With Enhanced Thermoelectric Performance. Nanotechnology. 2012. Vol. 23. Pp. 415604-1 – 415604-7.
11. Nguyen P.K., Sungho J., Berkowitz A.E. MnBi particles with high energy density made by spark erosion. J. Appl. Phys. 2014. Vol. 115. Iss. 17. Pp. 17A756–1.
12. Perekos A.E., Chernenko V.A., Bunyaev S.A., Zalutskiy V.P., Ruzhitskaya T.V., Boitsov O.F., Kakazei G.N. Structure and Magnetic Properties of Highly Dispersed Ni-Mn-Ga Powders Prepared by Spark Erosion. J. Appl. Phys. 2012. Vol. 112. Pp. 093909-1 – 093909-7.
13. Sen B., Kiyawat N., Singh P.K., Mitra S., Ye J.H., Purkait P. Developments in electric power supply configurations for electrical-discharge-machining (EDM. The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003. Vol. 1. Pp. 659–664.  DOI https://doi.org/10.1109/PEDS.2003.1282955
14. Suprunovska N.I., Shcherba A.A. Features of the Energy Interchange Between Capacitors in the Circuit Using Unidirectional Commutator or Bidirectional One. Proceedings of 2016 IEEE 2nd International Conference on Intelligent Energy and Power Systems (IEPS). 2016. Pp. 45–48. DOI https://doi.org/10.1109/IEPS.2016.7521843