MULTICHANNEL CONVERTION OF RANDOM DATA WITH THE PAIR-ELEMENTS OF ORDERED SAMPLES
ARTICLE_8_PDF (Українська)

Keywords

random data
uniformly distribution
ordered samples
probability density function (pdf)
sum of the pairs of order statistics
spdf-converter
density estimation випадкові дані
рівномірний розподіл
впорядковані вибірки
функція щільності ймовірності
probability density function (pdf)
сума парних упорядкованих статистик
spdf-конвертор
оцінка щільності ймовірності

How to Cite

[1]
Мазманян, Р. 2021. MULTICHANNEL CONVERTION OF RANDOM DATA WITH THE PAIR-ELEMENTS OF ORDERED SAMPLES. Tekhnichna Elektrodynamika. 5 (Aug. 2021), 063. DOI:https://doi.org/10.15407/techned2021.05.063.

Abstract

The concept of multichannel parallel converting of probability density function (pdf) of random data was previously used for single-element pdf-converters. In development of this concept, here we investigate converting properties of spdf-converters channels formed by the sum of the ​​pairs of ordered sample elements (order statistics). The characteristics of the conversion results as dependencies on the size of the samples and the displacement of the channels relative to the median of the samples were obtained for data with a uniform distribution density.  Also where excluded the areas of mutual dependence of the density functions of the summed elements, which further where normalized together with  approximating them functions. Despite the apparent structural differences, the goal of this study still was to determine the closeness of the converted data with some standard functions of the probability distribution density, in particular, with the normal distribution law. As before, the estimates of the closeness of the spdf-converter channels were obtained using the chi-square criteria. The results of the research were used to determine the size and location of the statistical closeness windows, and to construct spdf-converters statistical model. References 20, figures 14.

https://doi.org/10.15407/techned2021.05.063
ARTICLE_8_PDF (Українська)

References

Luo D., Wan X., Liu J., & Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Statistical Methods in Medical Research. 2016. No 27(6). Pp. 1785-1805. DOI: https://doi.org/10.1177/0962280216669183.

B. Horling and V. Lesser, A Survey of Multi-Agent Organizational Paradigms. The Knowledge Engineering Review. 2004. Vol. 19. No 4. Pp. 281–316. DOI: https://doi.org/10.1017/S0269888905000317.

Moradi, M. H., Razini, S., & Mahdi Hosseinian, S. State of art of multiagent systems in power engineering: A review. Renewable and Sustainable Energy Reviews. 2016. No 58. Pp. 814–824. DOI: https://doi.org/10.1016/j.rser.2015.12.339.

McArthur S. D. J. et al. Multi-Agent Systems for Power Engineering Applications—Part II: Technologies, Standards, and Tools for Building Multi-agent Systems. IEEE Transactions on Power Systems. 2007. Vol. 22. No 4. Pp. 1753-1759. DOI: https://doi.org/10.1109/TPWRS.2007.908472.

Shahbaz M. Q., Ahsanullah M., Hanif Shahbaz S. and Al-Zahrani B. Ordered Random Variables: Theory and Applications. Atlantis Press and Springer, 2016. 294 p. DOI: https://doi.org/10.2991/978-94-6239-225-0.

Dytso A., Cardone M., M. S. VeeduV. Poor, On estimation under noisy order statistics. Proceedings of the International Symposium on Information Theory, Paris, France, 2019. Pp. 36-40. URL: https://arxiv.org/abs/1901.06294 (accessed at 20.12.2020)

Liu Z. and Zhu J. Signal Detection From Unlabeled Ordered Samples. IEEE Communications Letters. 2018. Vol. 22. No 12. Pp. 2431-2434. DOI: https://doi.org/10.1109/LCOMM.2018.2875454.

David H.A., Nagaraja H.N. Order Statistics. John Wiley & Sons, Inc., 2003. DOI: https://doi.org/10.1002/0471722162.

Mazmanian R.O. Noncorralated data ordered samples as a single-element multichannel converter. Tekhnichna Electrodynamika. 2021. No 3. Pp. 74 – 82. (Ukr). DOI: https://doi.org/10.15407/techned2021.03.074

Mazmanian R.O. Ordered samples of random uncorrelated signal characteristics. Tekhnichna Electrodynamika. 2004. No 6. Pp. 60 – 64. (Rus).

Hogg R., McKean J., Craig A. Introduction to Mathematical Statistics. Boston: Pearson, 2019. 746 p.

Barron A.R., Sheu Ch.-H. Approximation of density functions by sequences of exponential families. The Annals of Statistics. 1991. Vol. 19. No 3. Pp. 1347-1369. DOI: https://doi.org/10.1214/aos/1176348252

Approximating the Probability Density Function of a Transformation of Random Variables. Methodology and Computing in Applied Probability. 2019. No 21. Pp. 633–645. DOI: https://doi.org/10.1007/s11009-018-9629-0

Montgomery, Douglas C., George C. Runger. Applied statistics and probability for engineers. John Wiley & Sons, Inc., 2002. 792 p.

Kappal S. Data Normalization using Median & Median Absolute Deviation (MMAD) based Z-Score for Robust Predictions vs. Min – Max Normalization. Journal of Research in Science: Natural and Formal. 2019. Vol. 19. No 4. Pp. 39 – 44.

Garthwirt J.L, Rubin H. The behavior of robust estimators on dependent data. The Annals of Statistics. 1975. Vol. 3. No 5. Pp. 1070-1100. https://doi.org/10.1214/aos/1176343241

Grinstead C. M., Snell J.L. Introduction to probability. Providence, RI, American Mathematical Society, 1997. 510 p.

Kozubowski T.J., Podg´orski K. Laplace probability distributions and related stochastic processes. Chapter 3. Probability: Interpretation, Theory and Applications. 2011. Pp. 105-145.

Guenther W.C. Power and Sample Size for Approximate Chi-Square Tests. The American Statistician. 1977. Vol. 31. No 2. Pp. 83-85. https://doi.org/10.1080/00031305.1977.10479201

Nisen J.A., Schwertman N.C., A simple method of computing the sample size for Chi-square test for the equality of multinomial distributions. Computational Statistics and Data Analysis. 2008. No 52. Pp. 4903–4908. DOI: https://doi.org/10.1016/j.csda.2008.04.007.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 183 | PDF Downloads: 86

Downloads