MODELING OF COUPLED ELECTROMECHANICAL AND THERMAL PROCESSES IN A LINEAR PER-MANENT MAGNET MOTOR BASED ON THE MULTIPHYSICS CIRCUIT THEORY
ARTICLE_8_PDF (Українська)

Keywords

electromechanical and thermal processes
linear permanent magnet motor
mechanical circuit
thermal circuit
two-mass vibration system двомасова вібраційна система
електромеханічні та теплові процеси
лінійний магнітоелектричний двигун
механічне коло
теплове коло

How to Cite

[1]
Подольцев, О. and Бондар, Р. 2020. MODELING OF COUPLED ELECTROMECHANICAL AND THERMAL PROCESSES IN A LINEAR PER-MANENT MAGNET MOTOR BASED ON THE MULTIPHYSICS CIRCUIT THEORY. Tekhnichna Elektrodynamika. 2 (Mar. 2020), 050. DOI:https://doi.org/10.15407/techned2020.02.050.

Abstract

The paper presents a computer multiphysics model that has been developed for calculating the related electrical, mechanical, and thermal processes in a linear permanent magnet motor for two-mass vibration system. The model is based on the theory of multiphysics circuits, in the framework of which for each of the indicated physical processes its own equivalent circuit is built, and all of them are combined into a single model that carries out the connection between all these circuits. According to the results of calculating the motor starting mode and reaching a stable thermal mode, it is shown that the transient thermal process for the motor lasts more than 2 hours of operation, and at the same time its most heated element the winding, is heated to a temperature of more than 130 С. The application of the developed multiphysics model allows one to predict the electromechanical and thermal characteristics of the motor when using various cooling systems natural cooling, forced cooling using air or liquid, both in transient and steady-state operation modes. References 8, figures 7.

https://doi.org/10.15407/techned2020.02.050
ARTICLE_8_PDF (Українська)

References

Goncharevich I.F. Vibrotechnics in mining. Moskwa: Nedra, 1992. 320 p. (Rus)

Bondar R.P. Research of the magnetoelectric linear oscillatory motor characteristics during the work on elastoviscous loading. Electrical engineering & electromechanics. 2019. No 1. Pp. 9-16. (Ukr) DOI: https://doi.org/10.20998/2074-272X.2019.1.02

Bondar R.P., Podoltsev A.D. Operating modes of a linear permanent magnet motor as an element of vibra-tion system. Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy. 2019. No 54. Pp. 52-62. (Ukr) DOI: https://doi.org/10.15407/publishing2019.54.052

Chau K.T, Wang Z. Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Sons (Asia) Pte Ltd, 2011. 318 p. DOI: http://dx.doi.org/10.1002/9780470826355

Podoltsev A.D., Kucheryavaya I.N. Multiphysics modeling in electrical engineering. Kyiv: Institute of electrodynamics National academy of sciences of Ukraine, 2015. 305 p. (Rus)

Patankar S.V. Numerical heat transfer and fluid flow. New York: Hemisphere Pub. Corp., 1980. 197 p.

Sipaylov G.A, Sannikov D.I, Zhadan V.A. Thermal, hydraulic and aerodynamic calculations in electric machines. Moskwa: Vysshaya shkola, 1989. 240 p. (Rus)

Hargreaves P.A., Mecrow B.C., Hall R. Calculation of iron loss in electrical generators using finite-element analysis. IEEE Transactions on Industry Applications. 2012. Vol. 48. No 5. Pp. 1460-1466. DOI: https://doi.org/10.1109/TIA.2012.2209851

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Array

Abstract views: 131 | PDF Downloads: 19

Downloads