ORDERED SAMPLES IN UNCORRELATED SIGNAL CONVERSION
ARTICLE_10_PDF (Українська)

Keywords

sliding samples
uncorrelated sequence
median filter
approximation
Pearson's criterion скользящие выборки
некоррелированная последовательность
медианный фильтр
аппроксимация
критерий Пирсона

How to Cite

[1]
Мазманян, Р. 2018. ORDERED SAMPLES IN UNCORRELATED SIGNAL CONVERSION. Tekhnichna Elektrodynamika. 3 (May 2018), 082. DOI:https://doi.org/10.15407/techned2018.03.082.

Abstract

The coherence function for an arbitrary pair the input sequence – a given element of ordered samples random data’s is defined. The essentially nonlinear character of this data processing method is established. Parametric and statistical estimates of the proximity of median transformations to the normal Gaussian distribution law are obtained. A technique for applying the Pearson criterion for estimating the statistical proximity of analytically defined functions is presented. References 15, figures 7.

https://doi.org/10.15407/techned2018.03.082
ARTICLE_10_PDF (Українська)

References

Tukey J.W. Nonlinear (Nonsuperposable) Methods for Smoothing Data. Proceedings of Congress Record EASCON, Washington DC, 7-9 October 1974. P. 673.

Mazmanian R.O. On some properties of the median transformations of measurement information. Tekhnichna Elektrodynamika. 2003. No. 6. P. 70-75. (Rus)

Mazmanian R.O. Characteristics of ordered samples of a random uncorrelated signal. Tekhnichna Elektrodynamika. 2004. No 6. P. 60-64. (Rus)

Venttsel E.S., Ovcharov L.A. Probability theory. Moskva: Nauka, 1973. 366 p. (Rus)

Otnes R., Enokson L. Applied time series analysis. Basic techniques. Moskva: Mir, 1982. 428 p. (Rus)

Mazmanian R.O. Spectral characteristics of ordered samples of a random uncorrelated signal. Tekhnichna Elektrodynamika. 2009. No 5. P. 63-68. (Rus)

Mazmanian R.O. Experimental studies of data transformation by sliding ordered samples. Tekhnichna Elektrodynamika. 2012. No 1. P. 78-86.

Tsyimbal V.P. Information theory and coding. Kyiv: Vyshcha shkola, 2003. 178 p. (Rus)

Huang T.S., Eklund Dzh.-O., Nussbaumer G.Dzh. Fast algorithms in digital image processing. Moskva: Radio i sviaz, 1984. 224 p. (Rus)

Eliseeva I.I., Yuzbashev M.M. General Theory of Statistics: textbook. Moskva: Finansy i statistika, 2001. 480 p. (Rus)

Tesler G.S., Zyi Hak Zung. Calculation of the function of the probability integral and its inverse. Matematychni mashyny i systemy. 2004. No 3. P. 31-40. (Rus)

Popov B.A., Tesler G.S. Calculation of functions on a computer. Handbook. Kiev: Naukova dumka, 1984. 600 p. (Rus)

Iglin S.P. Theory of Probability and Mathematical Statistics on the Basis of MATLAB: Manual. Kharkiv: NTU KhPI, 2006. 612 p. (Rus)

MathCAD 15. (2014). User’s Guide, Mathsoft Engineering & Education, Inc. Cambridge, MA.

Chandrakantha L. Simulating Chi-Square Test using Excel. Electronic Proceedings of the 25th Annual International Conference on Technology in Collegiate Mathematics (ICTCM), March, 2013, Boston, MA. P 50-58.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 50 | PDF Downloads: 9

Downloads

Download data is not yet available.