Abstract
A three-dimensional mathematical model has been developed and an analysis of inhomogeneous distribution of magnetic and temperature fields have been made in the lined inductor of melting-holding furnace for copper melting and in the copper template. The analysis was done considering a complex geometry of the inductor (which typical dimensions of the elements differ significantly), nonlinear dependence of the copper conductivity on temperature, ferromagnetic properties of a steel magnetic core and an availability of water cooling of the inductor coils and housing, accounting of the fluid temperature and mass transfer. A long-term process of the copper template melting of 18 hours duration at unsteady inductor power was considered. The local areas of the maximum of temperatures and temperature gradients in the lined inductor and their time changes were determined to analyze a reliability and a lifetime of the meltingholding furnace. References 18, figures 7.
References
Zolotarev V.M., Belyanin R.V., Podoltsev О.D. Analysis of electromagnetic processes in the induction channel furnace used in the cable industry // Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. – 2016. – Vol. 44. – Pp. 110–115. (Rus)
Shcherba A.A., Podoltsev О.D., Kucheriava I.М., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots // Tekhnichna Elektrodynamika. – 2013. – No 2. – Pp. 10–18. (Rus)
Shcherba М.А. Patterns of the electric field distribution in a dielectric medium at changing of sizes and shapes of the conducting inclusions // Tekhnichna Elektrodynamika. – 2012. – Vol. 2. – Pp. 19–20. (Rus)
Shcherba M.A. The features of the local electric field amplifications by conducting inclusions in nonlinear polymer insulation // Tekhnichna Elektrodynamika. – 2015. – Vol. 2. – Pp. 16–23. (Rus)
Shcherba M.А., Podoltsev A.D. Electric field and current density distribution near water inclusions of polymer insulation of high-voltage cables in view of its nonlinear properties // Tekhnichna Elektrodynamika. – 2016. – Vol. 1. – Pp. 11–19. (Rus) DOI: https://doi.org/10.15407/techned2016.01.011
Baake E., Nacke B., Bernier F., Vogt M. Experimental and numerical investigations of the temperature field and melt flow in the induction furnace with cold crucible // Intern. J. for computation and mathematics in electrical and electronic engineering COMPEL. – 2003. – Vol. 22(1). – Pp. 88–97.
Bay F., Labbé V., Favennec Y. A numerical model for induction heating processes coupling electro-magnetism and thermomechanics // Intern. J. for Numerical Methods in Engineering. – 2003. – Vol. 58(6). – Pp. 839–867.
Bermúdez A., Gómez D., Muñiz M.C., Salgado P., Vázquez R. Numerical simulation of a thermo-electromagnetohydrodynamic problem in an induction heating furnace // Applied Numerical Mathematics. – 2009. –Vol. 59(9). – Pp. 2082–2104.
Bermúdez A., Gómez D., Muñiz M.C., Salgado P. Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces // Advances in computational mathematics. – 2007. – Vol. 26(1-3). – Pp. 39–62.
Chaboudez C., Clain S., Glardon R., Mari D. Numerical modeling in induction heating for axisymmetric geometries // IEEE Trans. on Magnetics. – 1997. – Vol. 33(1). – Рр. 739–745.
Comsol Multiphysics, https://www.comsol.com/, Comsol Inc., Burlington, MA, USA, 2017.
Ghojel J.I., Ibrahim R.N. Computer simulation of the thermal regime of double-loop channel induction furnaces // J. of materials processing technology. – 2004. – Vol. 153. – Рр. 386–391.
Lucía O., Maussion P., Dede E.J. Induction heating technology and its applications: past developments, current technology, and future challenges // IEEE Trans. on Industrial Electronics. – 2014. – Vol. 61.5. – Pp. 2509–2520.
Rapoport E., Pleshivtseva Yu. Optimal control of induction heating processes. – CRC Press, 2006.
Rudnev V., Loveless D., Cook R.L., Black M. Handbook of induction heating. – CRC Press, 2002.
Ter Maten E.J.W., Melissen J.B.M. Simulation of inductive heating // IEEE Trans. on Magnetics. – 1992. – Vol. 28.2. – Pp. 1287–1290.
Umbrashko A., Baake E., Nacke B., Jakovics A. Modeling of the turbulent flow in induction furnaces // Metallurgical and Materials Trans. – 2006. – Vol. 37(5). – Pp. 831–838.
UPCAST, http://www.upcast.com/, Finland.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Tekhnichna Elektrodynamika
