MODELING AND CONTROL OF LONG-TERM ELECTROMAGNETIC AND THERMAL PROCESSES IN INDUCTION CHANNEL FURNACE FOR COPPER ROD PRODUCTION
ARTICLE_8_PDF (Українська)

Keywords

induction channel furnace
electromagnetic processes
thermal processes
phase transition at melting of workpiece
multiphysics circuit
computer modeling индукционная канальная печь
электромагнитные процессы
тепловые процессы
фазовый переход при плавлении заготовки
мультифизическая цепь
компьютерное моделирование

How to Cite

[1]
Щерба , А. , Подольцев , А., Кучерявая , И., Золотарев , В. and Белянин, Р. 2017. MODELING AND CONTROL OF LONG-TERM ELECTROMAGNETIC AND THERMAL PROCESSES IN INDUCTION CHANNEL FURNACE FOR COPPER ROD PRODUCTION. Tekhnichna Elektrodynamika. 4 (Jun. 2017), 055. DOI:https://doi.org/10.15407/techned2017.04.055.

Abstract

The paper presents multiphysics modeling of long-term (tens of hours) electromagnetic and thermal processes with different transient times that run in induction channel furnace used in the technology of copper wire rod production. The modeling is based on the coupled nonlinear equivalent electrical and thermal circuits, taking into account such factors as the dependence of the electrical conductivity and heat capacity of heated copper gauge on temperature, the phase transition at heating to a temperature above the melting point, the periodic injection of cold copper cathodes into the molten metal and the continuous casting of copper workpieces. As shown, the dynamic processes of heat- and mass- transfer in the furnace can be modeled by equivalent thermal circuit with nonlinear and commutated capacitances. The method is realized by Matlab/Simulink/SPS tools. The approach of artificial decrease of power supply frequency with simultaneous proportional increase of all inductances in the equivalent electrical circuit is proposed and implemented to reduce the computer time. The attained results of thermal computations give a possibility to define the rational technological conditions and parameters of the installation. References 12, figures 7.

 

https://doi.org/10.15407/techned2017.04.055
ARTICLE_8_PDF (Українська)

References

Vainberg A.M. Induction melting furnaces. – Мoskva: Energiia, 1967. – 416 p. (Rus)

Zolotarev V.M., Bilianin R.V., Podoltsev A.D. Analysis of electromagnetic processes in induction furnace // Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. – 2016. – No 44. – Pp. 110–115. (Rus)

Zolotarev V.M., Shcherba M.А., Zolotarev V.V,. Bilianin R.V. 3D Modeling of electromagnetic and thermal processes of copper template taking into account the design of the installation elements // Tekhnichna Elektrodynamika. – 2017. – No 3. – Pp. 13–21. (Rus)

Podoltsev O.D., Kucheriava I.M. Multiphysics modeling in electrical engineering. – Кyiv: Instytut Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy, 2015. – 305 p. (Rus)

Samarskii А.А., Moiseeenko V.D. Economic scheme of through calculation for multidimensional Stephan problems // Jurnal vychislitelnoi matematiki i matematicheskoi fiziki. – 1965. – Vol. 5. – No 5. – Pp. 816–827. (Rus)

Sipailov G.А. Thermal, hydraulic and aerodynamic calculations in electric machines. – Moskva: Visshaia shkola, 1989. – 239 p. (Rus)

Stolovich N.N., Minitskaia N.S. Temperature dependences of thermophysical properties of some metals. – Minsk: Nauka i tekhnika, 1975. – 160 p. (Rus)

Fomin N.I., Zatulovskii L.М. Electric furnaces and induction heating installations. – Moskva: Metallurgiia, 1979. – 247 p. (Rus)

Shcherba A.А., Podoltsev O.D., Kucheriava I.M., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots // Tekhnichna Elektrodynamika. – 2013. – No 2. – Pp. 10–18.

Comsol Multiphysics. – http://www.comsol.com .

Rantanen M. The 'UPCAST' method of producing copper wire // Wire industry. – 1976. – No 511. – Pp. 565–567.

UPCAST Products –Available at: http://www.upcast.com/rus/upcast-products.html (Accessed 20.02.2017)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 119 | PDF Downloads: 10

Downloads