ОСОБЛИВОСТІ РОЗПОДІЛІВ ЗА ДІАМЕТРАМИ ОТРИМАНИХ ЗА СУБМІЛІСЕКУНДНІЙ ТРИВАЛОСТІ РОЗРЯДНИХ ІМПУЛЬСІВ ІСКРОЕРОЗІЙНИХ ЧАСТИНОК АЛЮМІНІЮ І ЛУНОК НА ПОВЕРХНІ ЙОГО ГРАНУЛ
ARTICLE_2 PDF

Ключові слова

discharge pulses
electric spark dispersion of metals
distribution of spark-erosion particles розрядні імпульси
електроіскрове диспергування металів
розподіл іскроерозійних частинок

Як цитувати

[1]
Шидловська, Н., Захарченко, С. і Перекос, А. 2020. ОСОБЛИВОСТІ РОЗПОДІЛІВ ЗА ДІАМЕТРАМИ ОТРИМАНИХ ЗА СУБМІЛІСЕКУНДНІЙ ТРИВАЛОСТІ РОЗРЯДНИХ ІМПУЛЬСІВ ІСКРОЕРОЗІЙНИХ ЧАСТИНОК АЛЮМІНІЮ І ЛУНОК НА ПОВЕРХНІ ЙОГО ГРАНУЛ . ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА. 1 (Груд 2020), 10. DOI:https://doi.org/10.15407/techned2021.01.010.

Анотація

Наведено умови і методику отримання одномодальних розподілів за розмірами іскроерозійних частинок алюмінію. Розраховано статистичні параметри розподілів за розмірами іскроерозійних частинок алюмінію і лунок на поверхні його гранул, отриманих за субмілісекундній тривалості розрядних імпульсів. Проведено порівняльний аналіз об’ємів металу ерозійних лунок і частинок. Перевірено узгодженість отриманих на практиці розподілів за діаметрами іскроерозійних частинок і лунок з наступними теоретичними розподілами безперервної випадкової величини: Гауса, Вейбулла, інтеграла функції Розіна-Раммлера та з логарифмічно нормальним. При цьому параметри теоретичних розподілів розраховувались як за статистичними параметрами отриманих на практиці розподілів, так і за критерієм мінімально можливого значення середнього модуля відносного відхилення теоретичного і практичного розподілів. Показано, що за значеннях параметрів теоретичних розподілів, які відповідають статистичним параметрам практичних розподілів, розподіл ерозійних частинок за діаметром найкраще узгоджується з розподілом Гауса, а лунок – з розподілом інтеграла функції Розіна-Раммлера. Бібл. 27, рис. 2, табл. 3.

https://doi.org/10.15407/techned2021.01.010
ARTICLE_2 PDF

Посилання

Berkowitz A.E., Walter J.L. Spark Erosion: A Method for Producing Rapidly Quenched Fine Powders. Journal of Materials Research. 1987. No 2. Pp. 277–288. DOI: https://doi.org/10.1088/0957-4484/23/41/415604

Solomon V.C., McCartney M., Tang Y.J., Berkowitz A.E., O'Handley R.C., Smith D.J. Magnetic domain configurations in spark-eroded ferromagnetic shape memory Ni-Mn-Ga particles. Appl. Phys. Lett. 2005. Vol. 86. P. 192503-1 – 192503-3. DOI: https://doi.org/10.1063/1.1925319

Liu Y., Zhu K., Li X., Lin F., Li Y. Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water. Advanced Powder Technology. 2018. Vol. 29. Issue 4. Pp. 863–873. DOI: https://doi.org/10.1016/j.apt.2018.01.003

Berkowitz A.E., Harper H., Smith D.J., Hu H., Jiang Q., Solomon V.C., Radousky H.B. Hollow Metallic Microspheres Produced by Spark Erosion. Applied Physics Letters. 2004. Vol. 85. Pp. 940–942. DOI: https://doi.org/10.1063/1.1779962

Ochin P., Gilchuk A.V, Monastyrsky G.E., Koval Yu.N., Shcherba A.A, Zaharchenko S.N Martensitic Transformation in Spark Plasma Sintered Compacts of Ni-Mn-Ga Powders Prepared by Spark Erosion Method in Cryogenic Liquids. Materials Science Forum. 2013. Vol. 738. P. 451–455. DOI: https://doi.org/10.4028/www.scientific.net/msf.738-739.451

Monastyrskii G.E., Koval’ Yu.N., Shpak A.P., Musienko R.Ya., Kolomytsev V.I., Shcherba A.A., Zakharchenko S.N., Yakovenko P.G. Electrospark Powders of Shape Memory Alloys. Powder Metallurgy and Metal Ceramics. 2007. Vol. 46. No 5-6. Pp. 207–216. DOI: https://doi.org/10.1007/s11106-007-0034-4

Berkowitz A.E., Hansen M.F., Parker F.T., Vecchio K.S., Spada F.E., Lavernia E.J., Rodriguez R. Amorphous soft magnetic particles produced by spark erosion. Journal of Magnetism and Magnetic Materials. 2003. Vol. 254–255. Pp. 1–6. DOI: https://doi.org/10.1016/S0304-8853(02)00932-0

Hong J.I., Parker F.T., Solomon V.C., Madras P., Smith D.J., Berkowitz A.E. Fabrication of spherical particles with mixed amorphous/crystalline nanostructured cores and insulating oxide shells. Journal of Materials Research. 2008. Vol. 23. Issue 06. Pp. 1758–1763. DOI: https://doi.org/10.1557/JMR.2008.0199

Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology. 2012. Vol. 23. Pp. 415604-1 – 415604-7.

Shcherba A.A., Zakharchenko S.N., Lopatko K.G., Aftandilyants E.G. Application of volume electric spark dispersion for production steady to sedimentation hydrosols of biological active metals. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2009. Issue 22. Pp. 74–79. (Rus)

Lopatko K.G., Melnichuk M.G., Aftandilyants Y.G., Gonchar E.N., Boretskij V.F., Veklich A.N., Zakharchenko S.N., Tugay T.I., Tugay A.V., Trach V.V. Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences – SGGW Agriculture. 2013. Vol. 61. Pp. 105–115.

Lopatko K.G., Melnichuk M.D. Physics, synthesis and biological functionality of nanosize objects. Kyiv: Vidavnychii centr Natsionalnoho Universytetu Bioresursiv i Pryrodokorystuvannia Ukrainy, 2013. 297 p. (Ukr)

Goncharuk V.V., Shcherba A.A., Zakharchenko S.N., Savluk O.S., Potapchenko N.G., Kosinova V.N. Disinfectant action of the volume electrospark discharges in water. Khimiia i tehnologiia vody. 1999. No 3. Vol. 21. Pp. 328 – 336. (Rus)

Danilenko N.B., Savel’ev G.G., Yavorovskii N.A., Khaskel’berg M.B., Yurmazova T.A., Shamanskii V.V. Water purification to remove As(V) by electropulse treatment of an active metallic charge. Russian Journal of Applied Chemistry. 2005. Vol. 78. No 10. Pp. 1631–1635.

Kornev Ia., Saprykin F., Lobanova G., Ushakov V., Preis S. Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics. 2018. Vol. 96. Pp. 111–118. DOI: https://doi.org/10.1016/j.elstat.2018.10.008 .

Shcherba A.A., Podoltsev A.D., Kucheryavaya I.N. The study of erosive destruction of materials during electrical spark treatment of conductive granular media. Tekhnichna Electrodynamika. 2006. No 1. Pp. 3–10. (Rus)

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads. Tekhnichna Electrodynamika. 2017. No 2. Pp. 5–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005

Zakharchenko S.N., Kondratenko I.P., Perekos A.E., Zalutsky V.P., Kozyrsky V.V., Lopatko K.G. Influence of discharge pulses duration in a layer of iron granules on the size and structurally-phase conditions of its electroerosion particles. Eastern-European Journal of Enterprise Technologies. 2012. Vol. 6. No 5 (60). Pp. 66–72. (Rus)

Kremer N.Sh. Probability Theory and Mathematical Statistics. Moskva: Unity–Dana, 2004. 573 p.

Yezepov D. Pearson's consent criterion (Chi-square). URL: https://statanaliz.info/statistica/proverka-gipotez/kriterij-soglasiya-pirsona-khi-kvadrat/ (accessed at 13.05.2020). (Rus)

Ventzel E.S. Theory of Probability. Moskva: Nauka, 1969. 576 p. (Rus)

Kireyev V.V., Popov D.M., Ratnikov S.A., Grachev A.V. Development of Estimation Technique for Disperse Medium with Complex Composition. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2012. No 1(24). Pp. 107–112. (Rus)

Berezhnaya E.V., Berezhnoy V.I. Mathematical Methods of Modeling Economic Systems: Moskva: Finance and Statistics, 2006. 432 p.

Shydlovskaya N.A., Zakharchenko S.N., Cherkasskyi A.P. Nonlinear-parametrical Model of Electrical Resistance of Current-Carrying Granulated Mediums for a Wide Range of Applied Voltage. Tekhnichna Elektrodynamika. 2014. No 6. Pp. 3–17. (Rus)

Weibull distribution. URL: https://en.wikipedia.org/wiki/Weibull_distribution (accessed at 15.05.2020).

Rosin P., Rammler E. The Laws Governing the Fineness of Powdered Coal. Journal of the Institute of Fuel. 1933. Vol. 7. Pp. 39–36.

Kolmogorov A.N. About the logarithmically normal law of particle size distribution during the crushing. Reports of the Academy of Sciences of the USSR. 1941. Vol. 31. Pp. 99–101.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2020 Array

Переглядів анотації: 17 | Завантажень PDF: 8

Завантаження

Дані завантаження ще не доступні.