Анотація
У роботі розглянуто енергетичну стратегію реалізації надійного безперебійного електроживлення критично важливого технологічного обладнання промислового підприємства України в сучасних воєнних умовах шляхом створення в ньому промислової мікромережі та вирішення науково-технічних задач з оптимального використання її елементів і зменшення загальних витрат, які враховують вартість електроенергії, отримуваної від кожного джерела мікромережі. Задля вирішення вказаної задачі використовувався метод комп'ютерного моделювання. Показано, що для моделювання в мікромережі довготривалих (24-годинних) електромагнітних процесів доцільно використовувати узагальнений метод розрахунку комплексних струмів, який зазвичай застосовують для розрахунку електричних кіл синусоїдного струму. Але в даній задачі треба ще додатково ураховувати, що в мікромережі повільно змінюються в часі не тільки амплітуди струмів, але і їхні фази, тому бажано застосовувати метод динамічного фазору, за яким розрахунок проводиться одночасно у комплексній і часовій площинах. Для реалізації такого методу в пакеті Matlab/Simulink необхідно розробляти відповідні системні моделі для всіх джерел електроживлення та змінного у часі навантаження. Наведено результати розрахунку довготривалих (протягом доби) потоків активної та реактивної потужностей в мікромережі типового промислового підприємства, що містить такі джерела електроенергії, як когенераційна установка і сонячна електростанція, які можуть працювати як паралельно із зовнішньою електромережею, так і без неї. Визначено добові витрати на електроенергію, яка отримується від кожного джерела електроживлення. Оскільки в мікромережах використовуються різні джерела електроживлення, то під час визначення шляхів зменшення загальних витрат на електроенергію слід розглядати різні сценарії підключення джерел електроживлення та їхній взаємний вплив на загальні витрати. Бібл. 32, рис. 8, табл. 1.
Посилання
1. Microgrid. Design, Optimization, and Applications. Ed. by Amit Kumar Pandey. CRS Press, 2024. 316 p.
2. Patrao .I, Figueres E., Garcerá G., González-Medina R. Microgrid architectures for low voltage distributed generation. Renew Sustain Energy Rev. 2015. No 43. Pp. 415-424.
3. Pabbuleti B., Somlal J. A review on hybrid ac/dc microgrids: Optimal sizing, stability control and energy management approaches. J. Crit. Rev. 2021. No 7(1). Pp. 371-381.
4. SGCG/M490/G_Smart Grid Set of Standards 25 Version 3.1. Official edition. 2014. 259 p.
5. IEC TS 62898-1: 2017+AMD 1: 2023 Microgrids – Part 1: Guidelines for microgrid projects planning and specification. 2023. 78 p.
6. IEC TS 62898-2: 2018+AMD 1: 2023 Microgrids – Part 2: Guidelines for operation. 2018. 38 p.
7. Kroposki B., Basso T., DeBlasio R. Microgrid standards and technologies. Energy Society General Meeting, Pittsburgh, PA, USA, 20–24 July 2008. URL: https://doi.org/10.1109/pes.2008.4596703 (accessed at 15.06.2025).
8. Bayindir R., Colak I., Fulli G., Demirtas K. Smart grid technologies and applications. Renewable and Sustainable Energy Reviews. 2016. Vol. 66. Pp. 499-516. DOI: https://doi.org/10.1016/j.rser.2016.08.002.
9. Blinov I., Trach I., Parus Y., Khomenko V., Kuchanskyy V., Shkarupylo V. Evaluation of The Efficiency of The Use of Electricity Storage Systems in The Balancing Group and The Small Distribution System. IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 13-17 September 2021. Pp. 262-265. DOI: https://doi.org/10.1109/KhPIWeek53812.2021.9569981.
10. Hatziargyriou N., Hiroshi Asano, Reza Iravani, Chris Marnay. Microgrids. IEEE Power and Energy Magazine. 2007. Vol. 5. No 4. Pp. 78-94. DOI: https://doi.org/10.1109/mpae.2007.376583.
11. Sachidananda Sen, Vishal Kumar. Microgrid modelling: A comprehensive survey. Annual Reviews in Control. 2018. Vol. 46. Pp. 216-250. DOI: https://doi.org/10.1016/j.arcontrol.2018.10.010.
12. Liang H., Zhuang W. Stochastic Modeling and Optimization in a Microgrid: A Survey. Energies. 2014. Vol. 7(4). Pp. 2027-2050. DOI: https://doi.org/10.3390/en7042027.
13. Zia M.F., Elbouchikhi E., Benbouzid M.E.H. An Energy Management System for Hybrid Energy Sources-based Stand-alone Marine Microgrid. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 322. P. 012001. DOI: https://doi.org/10.1088/1755- 1315/322/1/012001.
14. Ostapchuk O.V., Shevchenko I.V. Use of hybrid systems based on renewable sources in microgrid: an overview. Vidnovliuvana energetika. 2022. No 4. Pp. 9-25. DOI: https://doi.org/10.36296/1819-8058.2022.4(71).9-25 . (Ukr)
15. Yeliz Yoldaş, Ahmet Önen, Muyeen S.M., Athanasios V. Vasilakos, İrfan Alan. Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews. 2017. Vol. 72. Pp. 205-214. DOI: https://doi.org/10.1016/j.rser.2017.01.064.
16. Shcherba A., Vinnychenko D., Suprunovska N., Roziskulov S., Dyczko A., Dychkovskyi R. Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation. Electronics. 2025. No 14(15). P. 2923. DOI: https://doi.org/10.3390/electronics14152923.
17. Zia M.F., Elbouchikhi E., Benbouzid M., Guerrero J.M. Energy Management System for an Islanded Microgrid With Convex Relaxation. IEEE Transactions on Industry Applications. 2019. Vol. 55. No 6. Pp. 7175-7185. DOI: https://doi.org/10.1109/tia.2019.2917357.
18. Shcherba A.A., Suprunovska N.I., Biletsky O.O. Increasing energy efficiency of charge circuits of supercapacitors from voltage source. Proceedings IEEE 7th International Conference on Energy Smart Systems (ESS-2020), Kyiv, Ukraine, May 12-14, 2020. Pp. 164-167. DOI: https://doi.org/10.1109/ESS50319.2020.9160218.
19. Shcherba A.A., Suprunovska N.I. Analysis of transient and steady modes in the power supply system of electric vehicles, which contains a battery and supercapacitors connected in parallel. Tekhnichna Elektrodynamika. 2025. No 5. Pp. 19-25. DOI: https://doi.org/10.15407/techned2025.05.019.
20. Shcherba A.A., Podoltsev O.D., Suprunovska N.I., Bilianin R.V., Antonets T.Yu., Masluchenko I.M. Modeling and analysis of electro-thermal processes in installations for induction heat treatment of aluminum cores of power cables. Electrical Engineering & Electromechanics. 2024. No 1. Pp. 51-60. DOI: https://doi.org/10.20998/2074-272X.2024.1.07. (Ukr)
21. Shcherba A.A., Suprunovska N.I., Shcherba M.A. Transient analysis in circuits of electric discharge installations with voltage feedback taking into account the recovery time of locking properties their semiconductor switches. Tekhnichna Elektrodynamika. 2018. No 3. Pp. 43-47. DOI: httpS://doi.org/10.15407/techned2018.03.043.
22. Shcherba A.A., Suprunovska N.I., Shcherba M.А. Features of the formation of multi-channel pulse currents and fast-migrating electric sparks in the layer of current-conducting granules of electric-discharge installations. Tekhnichna Elektrodynamika. 2022. No 2. Pp. 3-11. DOI: https://doi.org/10.15407/techned2022.02.00310.
23. Shcherba A., Podoltsev O., Kucheriava I., Hutorova M., Petryshyn L., Pazynich Yu. Computer simulation and management of partial discharges in XLPE insulation of high-voltage power cable. Polityka Energetyczna, Energy Policy Journal. 2025. No 28(3). Pp. 5-26. DOI: https://doi.org/10.33223/epj/208278.
24. Li Y., Nejabatkhah F. Overview of control, integration and energy management of microgrids. Journal of Modern Power Systems and Clean Energy. 2014. Vol. 2. No 3. Pp. 212–222. DOI: https://doi.org/10.1007/s40565-014-0063-1.
25. Sirviö K.H., Laaksonen H., Kauhaniemi K., Repo S. Evolution of the electricity distribution networks–active management architecture schemes and microgrid control functionalities. Applied Sciences. 2021. Vol. 11. No 4. Pp. 1772. DOI: https://doi.org/10.3390/app11041772.
26. Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Elmira Jamei, Ben Horan, Saad Mekhilef, Alex Stojcevski. Role of optimization techniques in microgrid energy management systems. A review. Energy Strategy Reviews. 2022. Vol. 43. Article no: 100899. DOI: https://doi.org/10.1016/j.esr.2022.100899.
27. Ahmad Alzahrani, Mehdi Ferdowsi, Pourya Shamsi, Cihan H. Dagli. Modeling and Simulation of Microgrid. Procedia Computer Science. 2017. Vol. 114. Pp. 392-400. DOI: https://doi.org/10.1016/j.procs.2017.09.053.
28. Yang T., Bozhko S., Le-Peuvedic J.M., Asher G., Hill C.I. Dynamic Phasor Modelling of Multi-Generator Variable Frequency Electrical Power Systems. IEEE Transactions on Power Systems. 2016. Vol. 31. Issue 1. Pp. 563-571. DOI: https://doi.org/10.1109/TPWRS.2015.2399371.
29. Sanders S.R., Noworolski J.M., Liu X.Z., Verghese G.C. Generalized averaging method for power conversion circuits. IEEE Transactions on Power Electronics. 1991. Vol. 6. Pp. 251-259.
30. Stagg G.W., ElAbiad A.H. Computer Methods in Power System Analysis. McGraw-Hill, 1968. 438 р.
31. Reijer Idema, Domenico J. P. Lahaye. Computational Methods in Power System Analysis, 2014. 123 р.
32. Mahmoud M.S., Hussain S.A., Abido M.A. Modeling and control of microgrid: An overview. Journal of the Franklin Institute. 2014. Vol. 351. Issue 5. Pp. 2822-2859. DOI: https://doi.org/10.1016/j.jfranklin.2014.01.016.

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Авторське право (c) 2026 ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА

