EXTRAPOLATION OF COMPLEX ERROR FUNCTION OF CONTROL SYSTEM WITH FEEDBACK
ARTICLE_58_PDF (Українська)

Keywords

Hilbert transform
structure of complex error function
extrapolation of complex error function
Wirtinger derivative преобразование Гильберта
структура функции комплексной ошибки
экстраполяция функции комплексной ошибки
производная Виртингера

How to Cite

[1]
Агамалов, О. 2012. EXTRAPOLATION OF COMPLEX ERROR FUNCTION OF CONTROL SYSTEM WITH FEEDBACK. Tekhnichna Elektrodynamika. 2 (Feb. 2012), 121.

Abstract

In the report the new type of a feedback based on structure and the subsequent extrapolation of a complex error function (CEF) of control systems is considered. Defining Hilbert's transform any an input and output of control system in the form of analytical signals, there is an instant phase delay between them and structure of CEF. Further, having defined CEF as not analytical complex function of complex argument (an output of plant) in an equilibrium point (the steady-state mode) and using a Wirtinger derivative for calculation of gains a power series, CEF it is extrapolated in an equilibrium point of control system at change of an output of plant. Extrapolated (predicted) value of CEF is used in a contour of feedback of control system. References 5.

ARTICLE_58_PDF (Українська)

References

Agamalov O.N. Geometrical Model of Control System Presented on Complex Error Surface // Journal of Problemy upravleniia i informatiki. 2011. Vol. 43. No 5. Pp. 23-39.

Agamalov O. Geometrical Model of Plant Presented on a State Surface of a Complex Error // 10th International Conference on Signal Processing, Robotics and Automation. Cambridge, UK, February 20-22, 2011.

Poularikas A.D. The Transforms and Applications Handbook. CRC Press, 2000. 1335 p.

Remmert R. Theory of Complex Functions. Springer-Verlag, 1991.

Kreutz-Delgado K. The complex gradient operator and the CR-calculus / Lecture Supplement ECE275A,2006. Pp. 1–74.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Array

Abstract views: 15 | PDF Downloads: 5

Downloads

Download data is not yet available.