CALCULATION OF THE RESONANT CONVERTERS CONTROL CHARACTERISTICS BY THE SUPERPOSITION METHOD
ARTICLE_3_PDF (Українська)

Keywords

аналітично-структурне моделювання
метод першої гармоніки
метод суперпозиції
регулювальні характеристики
резонансний перетворювач analytical-structural modeling
first harmonic method
superposition method
control characteristics
resonant converter

How to Cite

[1]
Павлов, Г., Обрубов, А., Вінниченко, І. and Махнов, А. 2024. CALCULATION OF THE RESONANT CONVERTERS CONTROL CHARACTERISTICS BY THE SUPERPOSITION METHOD. Tekhnichna Elektrodynamika. 4 (Jul. 2024), 024. DOI:https://doi.org/10.15407/techned2024.04.024.

Abstract

The work presents the calculations of the control characteristics of the full-bridge resonant converter with a series resonant LLC circuit and frequency control by two methods - the first harmonic method and the superposition method. The theoretical results were verified by the analytical-structural modeling method. The power circuit of the resonant converter for the analysis of electromagnetic processes is replaced by a linear T-shaped circuit with two series resonant RLC-circuits and equivalent generators of rectangular voltages, which simulate a transistor inverter and a diode rectifier in the quasi-continuous current mode. Analytical-structural modeling method consists in partly analytical and partly structural ways of building a numerical model of the resonant converter in the form of the simulation model in the MATLAB-Simulink environment. Linear structural links of the model are created on the basis of integral equations of circles. Non-linear links are created based on the non-linear functions and causal relationships. The structural model based on these links takes into account the nonlinearity of the elements of the power circuit of the resonant converter and is based on simpler mathematical expressions compared to the equivalent mathematical model of the resonant converter. The structural model corresponds to the idea of the resonant converter in the form of the resonant circuit with independent equivalent voltage generators and allows to adjust the magnetic coupling coefficient between the transformer windings and simulate processes with arbitrary control functions of equivalent generators. The peculiarity of the use of the superposition method for calculating the static characteristics of the resonant converter is the need to match the voltage phases of the equivalent generators of the equivalent circuit during the changes of the operating frequency or relative load voltage. The dependence of the input voltage of the rectifier, which is simulated by the second equivalent generator, on the processes of the power circuit of the real resonant converter, determines the conditions for matching (adjusting) the phases of the equivalent generators. References 30, figures 5.

https://doi.org/10.15407/techned2024.04.024
ARTICLE_3_PDF (Українська)

References

Wenjin Sun, Xiang Jin, Li Zhang, Haibing Hu, Yan Xing. Analysis and design of a multi-resonant converter with a wide output voltage range for EV charger applications. Journal of Power Electronics. 2017. Vol. 17. No 4. Pp. 849-859.

Pavlov G., Vinnychenko I., Nazarova N., Vinnychenko D., Obrubov A. Study of the effect of transformer windings coupling coefficient of flyback resonant converter for wireless energy transfer on its output characteristics. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 03–07 October 2022. Pp. 1-6. DOI: https://doi.org/10.1109/KhPIWeek57572.2022.9916434.

Pavlov G., Obrubov A., Vinnychenko I. Design procedure of static characteristics of the resonant converters. 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 26–28 August 2021. Pp. 401-406. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575698 .

Wikkerink D., Mor A.R., Polinder H., Ross R. Converter design for high temperature superconductive degaussing coils. IEEE Access. 2022. Vol. 10. Pp. 128656-128663. DOI: https://doi.org/10.1109/ACCESS.2022.3227508 .

Leach W.M. On the application of superposition to dependent sources in circuit analysis. IEEE Transactions on Education. 1994.

Ali Bekir Yildiz. Modified nodal analysis-based determination of transfer functions for multi-inputs multi-outputs linear circuits. Automatika. 2010. Vol. 51. No 4. Pp. 353-360. DOI: https://doi.org/10.1080/00051144.2010.11828391.

Mustafa M. W., Sulaiman M. H. Transmission loss allocation in deregulated power system via superposition and proportional tree methods. IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 01-03 December 2008. Pp. 988-993. DOI: https://doi.org/10.1109/PECON.2008.4762619.

Santos I.N., de Oliveira J.C., Macedo J.R. Modified superposition method for assignment of responsibilities on harmonic distortions. 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 17–19 October 2011. Pp. 1-5. DOI: https://doi.org/10.1109/EPQU.2011.6128814.

Huang S., Ding T., Li F., Yang L. A new calculation method for open-phase fault based on superposition principle. International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011. Pp. 1139-1143. DOI: https://doi.org/10.1109/APAP.2011.6180977.

Wu J., Bie L., Kong W., Gao P., Wang Y. Multi-frequency multi-amplitude superposition modulation method with phase shift optimization for single inverter of wireless power transfer system. IEEE Transactions on Circuits and Systems I: Regular Papers. 2021. Vol. 68. No 5. Pp. 2271-2279. DOI: https://doi.org/10.1109/TCSI.2021.3060832 .

Pavlov G., Obrubov A. Vinnychenko I. Dynamic model of the resonant converter for influence from the supply side. Tekhnichna Elektrodynamica. 2024. No 2. Pp. 42-51. DOI: https://doi.org/10.15407/techned2024.02.042 (Ukr.).

Xie H., He Y., Hang L., Zeng P., Zhan X. Research on improved modeling method of CLLLC resonant converter. IEEE International Power Electronics and Application Conference and Exposition (PEAC). Guangzhou. Guangdong, China, 04–07 November 2022. Pp. 1642-1648. DOI: https://doi.org/10.1109/PEAC56338.2022.9959125.

Mammano B. Resonant mode converter topologies. Texas Instruments. 2001. URL: https://www.thierry-lequeu.fr/data/SLUP085.pdf (accessed at 02.04.2024)

Kazimierczuk M., Czarkowski D. Resonant power converters, 2nd ed. John Wiley & Sons, Inc, 2011. 640 p.

Erickson B. Resonant power conversion. 2012. Colorado Power Electronics Center, Boulder.

Yoo J.-S., Gil Y.-M., Ahn T.-Y. Steady-state analysis and optimal design of an LLC resonant converter considering internal loss resistance. Energies. 2022. Vol. 15. Pp. 8144-8152. DOI: https://doi.org/10.3390/en15218144

Fredderics A., Kumar K. V., Renius J., Guru R. The FHA analysis of dual-bridge LLC type resonant converter. International Journal of Power Electronics and Drive Systems (IJPEDS). 2014. Vol. 4. DOI: https://doi.org/10.11591/ijpeds.v4i4.6513.

Yang B., Lee F., Zhang A., Huang G. LLC resonant converter for front-end DC/DC conversion. APEC. 17th annual IEEE applied power electronics Conference and Exposition, Dallas, USA, 10–14 March 2002. Vol. 2. Pp. 1108-1112. DOI: https://doi.org/10.1109/APEC.2002.989382.

Pavlov G., Pokrovskiy M., Vinnichenko I., Vinnichenko D., Zhuk I. Energy parameters of the serial-to-serial resonant converter with pulse-number control for wireless power transfer. IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS), Istanbul, Turkey, 07–11 September 2020. Pp. 296-300. DOI: https://doi.org/10.1109/IEPS51250.2020.9263195.

Huang J., Zhang X. Step-by-step threshold design methodology of switching frequency regulation for a generalized resonant DC–DC converter. IEEE Transactions on Industrial Electronics. 2020. Vol. 67. Pp. 10975-10980. DOI: https://doi.org/10.1109/TIE.2019.2959514

Wang H., Shen T., Wu N., Tang F. A Low-power hiccup-mode short-circuit protection technique for DC-DC boost converter. Electronics. 2022. Vol 11. Pp. 870-879. DOI: https://doi.org/10.3390/electronics11060870

Wan H. High efficiency DC-DC converter for EV battery charger using hybrid resonant and PWM technique: PhD diss. Thesis. Virginia Tech., 2012. 125 p.

Wei Y., Luo Q., Mantooth H.A. LLC and CLLC resonant converters based DC transformers (DCXs): characteristics, issues, and solutions. CPSS Transactions on Power Electronics and Applications. 2021. Vol. 6. No 4. Pp. 332-348. DOI: https://doi.org/10.24295/CPSSTPEA.2021.00031.

De Simone S., Adragna C., Spini C. Gattavari G. Design-oriented steady-state analysis of LLC resonant converters based on FHA. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Italy, 23–26 May 2006. Pp. 200-207. DOI: https://doi.org/10.1109/SPEEDAM.2006.1649771.

De Simone S., Adragna C., Spini C. Design guideline for magnetic integration in LLC resonant converters. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11–13 June 2008. Pp. 950-957. DOI: https://doi.org/10.1109/SPEEDHAM.2008.4581225.

Smeets P. First harmonic approximation - power transfer deviation for resonant LLC converters. ZeoN PowerTec. 2014. 8 p. URL: https://www.zeonpowertec.com/uploads/0LxZctXr/zeonpowertec_doc1a.pdf (accessed at 02.04.2024)

Bartecka M., Kłos M., Paska J. Effective design methodology of CLLC resonant converter based on the minimal area product of high-frequency transformer. Energies. 2024. Vol. 17. No 1. Pp. 55-66. DOI: https://doi.org/10.3390/en17010055.

Pavlov G., Obrubov A., Vinnichenko I. Determining the dynamic model of the charging resonant converter with inductive coupling by an experimental-analytical method. Eastern-European Journal of Enterprise Technologies. 2022. Vol. 4. No 8(118). Pp. 17-28. DOI: https://doi.org/10.15587/1729-4061.2022.263526 .

Pavlov G., Obrubov A., Vinnichenko I. Optimizing the operation of charging self-generating resonant inverters. Eastern-European Journal of Enterprise Technologies. 2022. Vol. 1. No 5(115). Pp. 23-34. DOI: https://doi.org/10.15587/1729-4061.2022.252148

Hosea M.E., Shampine L.F. Analysis and implementation of TR-BDF2. Applied Numerical Mathematics. 1996. Vol. 20. Iss. 1–2. Pp. 21-37. DOI: https://doi.org/10.1016/0168-9274(95)00115-8.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Array

Abstract views: 155 | PDF Downloads: 35

Downloads