THE REDUCTION OF MAGNETIC FIELD OF UNDERGROUND CABLE LINE IN ESSENTIAL AREAS BY MEANS OF FINITE-LENGTH COMPOSITE MAGNETIC SHIELDS
ARTICLE_2_PDF (Українська)

Keywords

underground cable line
three-dimensional magnetic field
magnetic shield
composite material with magnetic properties
magnetic field reduction
finite-element analysis підземна кабельна лінія
тривимірне магнітне поле
магнітний екран
композиційний матеріал з магнітними властивостями
зниження рівня магнітного поля
скінченно-елементний аналіз

How to Cite

[1]
Shcherba, A. et al. 2022. THE REDUCTION OF MAGNETIC FIELD OF UNDERGROUND CABLE LINE IN ESSENTIAL AREAS BY MEANS OF FINITE-LENGTH COMPOSITE MAGNETIC SHIELDS. Tekhnichna Elektrodynamika. 2022, 1 (Jan. 2022), 017. DOI:https://doi.org/10.15407/techned2022.01.017.

Abstract

In the article, the numerical calculation and analysis of three-dimensional magnetic field of underground power cable line with finite-length magnetic shields used to reduce the level of this field on the ground are carried out. Both fill-up soil and filling soil containing magnetic particles and then having effective magnetic properties (=1÷1000) are proposed to used as magnetic shields. The shielding efficiency is studied for underground 330 kV cable line depending on the dimensions and effective magnetic permeability () of the shields. As shown, the use of filling soil with magnetic properties gives a possibility to reduce the field on the ground five times. This type of shielding is more efficient as compared to magnetic fill-up soil. The computed results reveal the non-monotonic variation of magnetic field on the ground above the soil edge zones. The longitudinal size of these zones is in the order of the depth of the cables. References 16, figures 9.

https://doi.org/10.15407/techned2022.01.017
ARTICLE_2_PDF (Українська)

References

Shidlovskii A.K., Shcherba A.A., Zolotarev V.M., Podoltsev A.D., Kucheriava I.M. Extra-high voltage ca-bles with polymer insulation. Kyiv: Institute of Electrodynamics, Ukrainian Academy of Sciences. 2013. 550 p. (Rus)

Greshniakov G.V., Doronin M.V., Korovkin N.V. Combined magnetic shields for cable power lines. Kabeli i provoda. , 2015. No 5. Pp. 8–13. (Rus)

Kucheriava I.M. Shielding of underground extra-high voltage cable line by plane ferromagnetic shield. Tekhnichna Elektrodynamika. 2019. No 6. Pp. 13–17. (Rus) DOI: https://doi.org/10.15407/techned2019.06.013

Machado V.M. Magnetic field mitigation shielding of underground power cables. IEEE Transactions on Magnetics. 2012. Vol. 48. No 2. Pp. 707–710. DOI: https://doi.org/10.1109/TMAG.2011.2174775

Shcherba A.A., Podoltsev O.D., Kucheriava I.M. The magnetic field of underground 330 kV cable line and ways for its reduction. Tekhnichna Elektrodynamika. 2019. No 5. Pp. 3–9. (Rus) DOI: https://doi.org/10.15407/techned2019.05.003

Shevel D.M. Electromagnetic safety. Kyiv: Vek+, Kyiv: NTI, 2002. 432 p. (Rus)

Electric installation code. Minpalivo Ukrainy, 2010. 776 p. (Ukr)

D’Amore M., Menghi E., Sarto M.S. Shielding techniques of the low-frequency magnetic field from cable power lines. IEEE Internat. Symposium on Electromagnetic Compatibility. Istanbul, 18–22 Aug., 2003. Vol. 1. Pp. 203–208.

De Wulf M., Wouters P., Sergeant P., Dupré L., Hoferlin E., Jacobs S., Harlet P. Electromagnetic shielding of high-voltage cables. Journal of Magnetism and Magnetic Materials. 2007. No 316. Pp. 908–911. DOI: https://doi.org/10.1016/j.jmmm.2007.03.137

Zhou P., Fu W.N., Lin D., Stanton S., Cendes Z.J. Numerical modeling of magnetic devices. IEEE Trans-actions on Magnetics. July 2004. Vol. 40. Is. 4. Pp. 1803–1809. DOI: https://doi.org/10.1109/TMAG.2004.830511

Biro O., Preis K., Vrisk G., Richter K.R., Ticar I. Computation of 3D magnetostatic fields using a reduced scalar potential. IEEE Transactions on Magnetics. 1993. Vol. 29. Is. 2. Pp. 1329–1332. DOI: https://doi.org/10.1109/20.250643

Petukhov I.S., Akinin K.P. Replacing of the electrical machine winding with magnetized medium at model-ing of magnetic field in overhang parts. Pratsi Instytutu Elektrodynamiki NAN Ukrainy. 2016. Is. 45. Pp. 108–112.

Rozov V.Yu., Reutskiy S.Yu., Pelevin D.E., Yakovenko V.N. Investigation of magnetic field of high-voltage AC transmission lines. Tekhnichna Elektrodynamika. 2012. No 1. Pp. 3–9. (Rus)

Kucheriava I.M. Particularities of magnetic field shielding for underground cable line by composite fill-up soil with magnetic properties. Pratsi Instytutu Elektrodynamiki NAN Ukrainy. 2021. Is. 58. Pp. 14-22. DOI: https://doi.org/10.15407/publishing2021.58.014

Comsol multiphysics modeling and simulation software. URL: https://www.comsol.com/ (accessed at 25.03.2021).

Lyach V.V., Molchanov V.M., Sudakov I.V., Pavlichenko V.P. 330 kV cable line is a new step in devel-opment of Ukrainian power networks. Elektricheskie seti i sistemy. 2009. No 3. Pp. 16–21. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 482 | PDF Downloads: 162

Downloads

Download data is not yet available.