INCREASING THE SENSITIVITY AND METROLOGICAL RELIABILITY OF A DIFFERENTIAL CONDUCTOMETRIC BIOSENSOR SYSTEM
ARTICLE_8_PDF

Keywords

differential conductometric biosensors
impedance
measurement
common mode interferences
equivalent electrical model диференціальні кондуктометричні біосенсори
імпеданс
вимірювання
синфазний вплив
еквівалентна електрична модель

How to Cite

[1]
Melnyk, .V., Borshchov , P., Dzyadevych , S., Saiapina, O. and Vasylenko, O. 2021. INCREASING THE SENSITIVITY AND METROLOGICAL RELIABILITY OF A DIFFERENTIAL CONDUCTOMETRIC BIOSENSOR SYSTEM. Tekhnichna Elektrodynamika. 6 (Oct. 2021), 068. DOI:https://doi.org/10.15407/techned2021.06.068.

Abstract

The differential method of conductometric measurements does not fully solve the problem of the influence of changes in the background electrical conductivity of the working buffer solutions on the results of conversion of the biosensor responses. The variation in the background electrical conductivity of the buffer solution upon addition of the highly conductive analyte acts as a common mode interference and causes the additive error. Here we present a new measurement method and structure of the device for quantification of the analytes that provide a significant decrease in the measurement error associated with a change in the background electrical conductivity caused by the introduction of the analyte to the working solution prior to the generation of the informative signal. A block diagram of the device and a vector model of the balancing process of its measuring circuit are presented. The advantages of the developed method and biosensor analyzer for application within the possible changes of the transducer parameters and measurement conditions are demonstrated. References 28, figures 4.

https://doi.org/10.15407/techned2021.06.068
ARTICLE_8_PDF

References

Turner A.P.F., Karube I., Wilson G.S. Biosensors: Fundamentals and applications. New York: Oxford University Press, 1987. 770 p. DOI: https://doi.org/10.1016/S0003-2670(00)85361-1

Varnakavi Naresh, Nohyun Lee. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors. 2021. Vol. 21 (4). Article 1109. DOI: https://doi.org/10.3390/s21041109.

Janata J. Conductometric sensors. In: Principles of Chemical Sensors. Boston: Springer, 2009. Pp. 241–266. DOI: https://doi.org/10.1007/b136378

Lee S-M., Lee W-Y. Determination of heavy metal ions using conductometric biosensor based on sol-gel immobilized urease. Bulletin of the Korean Chemical Society. 2002. Vol. 23. No 8. Pp. 1169-1172. DOI: https://doi.org/10.5012/bkcs.2002.23.8.1169

Adley C.C., Ryan M.P. Conductometric biosensors for high throughput screening of pathogens. In: High Throughput Screening for Food Safety Assessment: Biosensor Technologies, Hyperspectral Imaging and Practical Applications. Cambridge: Woodhead Publishing Ltd, 2014. Pp. 315-326. DOI: https://doi.org/10.1016/B978-0-85709-801-6.00014-9

Perera G.S, Ahmed T., Heiss L., Walia S., Bhaskaran M., Sriram S. Rapid and selective biomarker detection with conductometric sensors. Nano-Micro Small. 2021. Vol. 17. Article 2005582. DOI: https://doi.org/10.1002/smll.202005582

Braiek M., Djebbi M.A., Chateaux J-F., Jaffrezic-Renault N. A conductometric sensor for potassium detection in whole blood. Sensor and Actuators B: Chemical. 2016. Vol. 235. Pp. 27–32. DOI: https://doi.org/10.1016/j.snb.2016.05.050

Sosovska O., Korpan Y., Vocanson F., Jaffrezic-Renault N. Conductometric chemosensors based on calixarenes for determination of amines and amino acids. Sensor Letter. 2009. Vol. 7. Pp. 989–994. DOI: https://doi.org/10.1166/sl.2009.1186

Watson L.D., Maynard P., Cullen D.C., Sethi R.S., Brettle J., Lowe C.R. A microelectronic conductometric biosensor. Biosensors. 1987-1988. Vol. 3(2). Pp. 101–115. DOI: https://doi.org/10.1016/s0265-928x(87)80003-2

Sheppard N.F., Tucker R.C., Wu C. Electrical conductivity measurements using microfabricated interdigitated electrodes. Analytical Chemistry. 1993. Vol. 65(9). Pp. 1199–1202. DOI: https://doi.org/10.1021/ac00057a016

Lee W.Y., Kim S.R., Kim T.H., Lee K.S., Shin M.C., Park J.K. Sol-gel-derived thick-film conductometric biosensor for urea determination in serum. Analytica Chimica Acta. 2000. Vol. 404(2). Pp. 195–203. DOI: https://doi.org/10.1016/S0003-2670(99)00699-6

Jacobs P., Suls J., Sansen W. Performance of a planar differential-conductivity sensor for urea. Sensor and Actuators B: Chemical. 1994. Vol. 20. Issues 2-3. Pp. 193–198. DOI: https://doi.org/10.1016/0925-4005(94)01180-X

Hintsche R., Moller B., Dransfeld I., Wollenberger U., Scheller F., Hoffmann B. Chip biosensors on thin-film metal electrodes. Sensor and Actuator B: Chemical. 1991. Vol. 4. Issues 3-4. Pp. 287–291. DOI: https://doi.org/10.1016/0925-4005(91)80124-3

Melnyk V.G., Dzyadevych S.V., Novik A.I., Pogrebnyak V.D., Slitskiy A.V., Lepikh Ya.I., Lenkov S.V., Procenko V.O. Ensuring of reliability of metrological characteristics of the conductometric systems with differential sensors. Sensor Electronics and Microsystem Technologies. 2011. Vol. 8(4). Pp. 46–52. DOI: https://doi.org/10.18524/1815-7459.2011.4.119304

Melnyk V.G., Dzyadevych S.V., Ivashchuk A.V., Ulyanova V.A., Lepikh Ya.I., Romanov V.O. The experimental studies of microelectronic transducers for conductometric biosensor systems. Sensor Electronics and Microsystem Technologies. 2011. Vol. 8(3). Pp. 81–90. DOI: https://doi.org/10.18524/1815-7459.2011.3.118131 (Rus).

Latif U., Dickert F.L. Conductometric sensors for monitoring degradation of automotive engine oil. Sensors. 2011. Vol. 11(9). Pp. 8611–8625. DOI: https:doi.org/10.3390/s110908611

Sergeyeva T.A., Lavrik N.V., Rachkov A.E., Kazantseva Z.I., Piletsky S.A., El'skaya A.V. Hydrogen peroxide-sensitive enzyme sensor based on phthalocyanine thin film. Analytica Chimica Acta. 1999. Vol. 391. Pp. 289-297. DOI: https://doi.org/10.1016/S0003-2670(99)00203-2

Berezhetska O., Korpan Y., Gonchar M. Conductometric biosensor based on flavocytochrome b2 for L-lactate determination. Sensor Letter. 2011. Vol. 9. Pp. 2388-2394. DOI: https://doi.org/10.1166/sl.2011.1796

Khadro B., Namour P., Bessueille F., Leonard D., Jaffrezic-Renault N. Validation of a conductometric bienzyme biosensor for the detection of proteins as marker of organic matter in river samples J. Environ. Sci. (China). 2009. Vol. 21. Pp. 545-551. DOI: https://doi.org/10.1016/S1001-0742(08)62306-2

Barsoukov E., Macdonald J.R. Impedance spectroscopy: Theory, experiment, and applications. Wiley-Interscience, John Wiley & Sons, Inc., 2005. DOI: https://doi.org/10.1002/0471716243

Brett C.M.A., Brett A.M.O. Electrochemistry – Principles, methods and applications. Oxford University Press, 1993. 427 p.

Grossi M., Riccò B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017. No 6. Pp. 303–325. DOI: https://doi.org/10.5194/jsss-6-303-2017

Novitskiy S.P., Pechnikov A.L. Improving an estimation accuracy of research object parameters by the impedance spectroscopy method. Science Bulletin of the Novosibirsk State Technical University. 2015. Vol. 60(3). Pp. 48–57. DOI: https://doi.org/10.17212/1814-1196-2015-3-48-57 (Rus).

Sekushin N.A. Properties of Warburg and Gerischer diffusion impedances in low frequencies region. Bulletin of Komi Science Center of Ural Branch of the Russian Academy of Sciences. 2010. Vol 4. No 4. Pp. 22–26. URL: http://www.izvestia.komisc.ru/old/Archive/i04/sekushin.pdf (accessed 05.07.2021) (Rus).

Fang T.T. Amino acid pattern for analysis of fruit juice authenticity. In: Analysis of non-alcoholic beverages. Springer-Verlag Berlin Heidelberg, 1988. Pp. 51-68. DOI: https://doi.org/10.1007/978-3-642-83343-4

Winter G., Todd C.D., Trovato M., Forlani G., Funck D. Physiological implications of arginine metabolism in plants. Frontiers in Plant Science. 2015. Vol. 6. Article 534. Pp. 1–14. DOI: https://doi.org/10.3389/fpls.2015.00534

Saiapina O.Y., Dzyadevych S.V., Jaffrezic-Renault N., Soldatkin O.P. Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination. Talanta. 2012. No 92. Pp. 58–64. DOI: https://doi.org/10.1016/j.talanta.2012.01.041

Stasyuk N., Smutok O., Gayda G., Vus B., Koval’chuk Y., Gonchar M. Bi-enzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosens. Bioelectron. 2012. Vol. 37(1). Pp. 46–52. DOI: https://doi.org/10.1016/j.bios.2012.04.031

Verma N., Singh A.K., Kaur P. Biosensor based on ion selective electrode for detection of L-arginine in fruit juices. J. Anal. Chem. 2015. Vol. 70(9). Pp. 1111–1115. DOI: https://doi.org/10.1134/S1061934815090129

Zhybak M T., Fayura L.Y., Boretsky Yu.R., Gonchar M.V., Sibirny A.A., Dempsey E., Turner A., Korpan Ya.I. Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase. Microchimica Acta. 2017. Vol. 184(8). Pp. 2679–2686. DOI: https://doi.org/10.1007/s00604-017-2290-4

Singh A.K., Sharma R., Singh M., Verma N. Electrochemical determination of L-arginine in leukemic blood samples based on a polyaniline-multiwalled carbon nanotube-magnetite nanocomposite film modified glassy carbon electrode. Instrum. Sci. Technol. 2020. Vol. 48(4). Pp. 400–416. DOI: https://doi.org/10.1080/10739149.2020.1734934

Melnyk V.G., Onyshchenko I.V., Rubanchuk M.P., Slitskiy O.V. Differential conductometric system with improved suppression of common-mode interferences. Tekhnichna Electrodynamica. 2015. No 2. Pp. 75–82. (Rus)

Melnyk V.G., Slitskiy A.V., Vasylenko A.D. The quasi balanced conductometric bridge for biosensor system with balancing modulus and phase. Sensor Electronics and Microsystem Technologies. 2016. Vol. 13(3). Pp. 91–100. DOI: https://doi.org/10.18524/1815-7459.2016.3.78649 (Rus)

Melnyk V.G., Borschov P.I., Beliaev V.K., Vasylenko O.D., Lameko O.L., Slitskiy O.V. Improvement generating of the test signals for determination of the impedance parameters in wide frequency range. Sensor Electronics and Microsystem Technologies. 2020. Vol. 17(2). Pp. 60–72. DOI: https://doi.org/10.18524/1815-7459.2020.2.205825

Melnyk V.G., Borschov P.I., Beliaev V.K., Vasylenko O.D., Lameko O.L., Slitskiy O.V. Implementation and experimental research of the test and reference signals digital generators for impedance measurement in wide frequency band. Sensor Electronics and Microsystem Technologies. 2020. Vol. 17(3). Pp. 27–39. DOI: https://doi.org/10.18524/1815-7459.2020.3.212951

Melnyk V.G., Vasilenko O.D., Dudchenko A.E., Pogrebnyak V.D. Research common mode rejection in conductometric biosensor system with differential sensors. Sensor Electronics and Microsystem Technologies. 2014. Vol. 11(3). Pp. 49–61. DOI: https://doi.org/10.18524/1815-7459.2014.3.108258 (Rus).

Melnyk V.G., Semenycheva L.N., Vasylenko A.D. Investigation of characteristics of transforming of the differential conductometric circuit for biosensors systems. Sensor Electronics and Microsystem Technologies. 2011. Vol. 8(4). Pp. 53–62. DOI: https://doi.org/10.18524/1815-7459.2011.4.119355 (Rus).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 334 | PDF Downloads: 174

Downloads