IMPROVING THE EFFICIENCY OF HIGH-VOLTAGE ELECTRIC DISCHARGE INSTALLATIONS WHICH USE EXOTHERMAL DISPERSED MEDIA
ARTICLE_12_PDF (Українська)

Keywords

electric discharge
high-voltage installation
interelectrode gap
controlled introduction of energy
channel of discharge
exothermic medium
pressure
energy efficiency электроразряд
высоковольтная установка
межэлектродный промежуток
управляемый ввод энергии
канал разряда
экзотермическая среда
давление
энергоэффективность

How to Cite

[1]
Vovchenko , O. et al. 2019. IMPROVING THE EFFICIENCY OF HIGH-VOLTAGE ELECTRIC DISCHARGE INSTALLATIONS WHICH USE EXOTHERMAL DISPERSED MEDIA. Tekhnichna Elektrodynamika. 5 (Aug. 2019), 077. DOI:https://doi.org/10.15407/techned2019.05.077.

Abstract

The article shows that the use of high-voltage electrical discharge installations, instead of traditional single-circuit capacitive double-circuit pulse generators, as well as control of the energy accumulated in them (by changing the capacitances and / or voltages of their charge) and the moment of energy input into the interelectrode gap filled with exothermic dispersed medium, allows to increase more than 1.5 times the energy efficiency of such facilities. This approach is especially effective when using exothermic medium containing aluminum with different dispersity as a fuel. In this case, the increase in the energy characteristics of the electric-discharge installations is ensured by increasing the duration of the exothermic processes. Moreover, one of the most important conditions for increasing the energy characteristics of such facilities is to maintain the pressure in the channel above the critical value (~ 22.5 MPa), which is necessary for the flow of self-sustaining exothermic reactions. References 10, figures 5.

https://doi.org/10.15407/techned2019.05.077
ARTICLE_12_PDF (Українська)

References

Vovchenko O.I., Posokhov A.A. Controlled electric explosion processes of energy conversion in condensed me-dia. Kyiv: Naukova dumka, 1992. 168 p. (Rus.)

Rizun, A.R., Golen. Yu.V., Denisyuk T.D., Mushtatny G.P. Pulsed electric discharge technologies in construc-tion. Budivnytstvo Ukrainy. 2008. No 10. Pp. 29 - 31. (Rus.)

Kornev Ia., Saprykin F., Lobanova G., Ushakov V., Preis S. Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics. 2018. Vol. 96. Pp. 111–118.

Gerasimov B.V., Pozdeev V.A. High-voltage electrochemical explosion in the discharge-pulse technology of fitting the tubes in tube sheets. Collection of scientific works of In-that pulse processes and technologies of the National Academy of Sciences of Ukraine. Physical and technical aspects of electric energy conversion. Kyiv. 1990. Pp. 85-89. (Rus.)

Shcherba A.A., Kosenkov V.M., Bychkov V.M. Mathematical closed model of electric and magnetic fields in the discharge chamber of an electrohydraulic installation. Surface Engineering and Applied Electrochemistry. 2015. Vol. 51. Issue 6. Pp 581–588.

Tertilov R.V. Optimization of discharge-pulse technologies based on the use of dual-circuit pulse current genera-tors. Tekhnichna Elektrodynamika. 2011. No 3. Pp. 67-72. (Rus.)

Kravchenko V.I., Petkov A.A. Parametrical synthesis of high-voltage pulse test device with capacitive energy storage. Elektrotehnika i elektromehanika. 2007. No 6. Pp. 70–75. (Rus.)

Suprunovska N.I., Shcherba A.A., Ivashchenko D.S., Beletsky O.A. Prosesses of energy exchange between nonlinear and linear links of electric equivalent circuit of supercapacitors. Tekhnicna Elektrodynamika, 2015. No 5. Pp. 3–11. (Rus.)

Vovchenko O.I., Demidenko L.Yu., Starkov I.M. The processes of energy conversion in high-voltage electro-chemical explosion in limited quantities. Elektronnaia obrabotka materialov. 2017, No 53 (5). Pp. 41-47. (Rus.)

Vovchenko O.I., Demidenko L.Yu., Starkov I.M. Algorithms for calculating the parameters of the combined electric discharge source of energy in the high-voltage electrochemical explosion (hvee) in confined volumes. Elektronnaia obrabotka materialov. 2018. No 54 (3). Pp. 69-73. (Rus.)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 175 | PDF Downloads: 30

Downloads

Download data is not yet available.