Abstract
A vector hysteresis model for the symmetric magnetization cycle, based on a combination of fractional rational functions was proposed. The model explicitly expresses dependences of field strength from induction. The model is intended to be used with finite element method and represents the influence of the saturation of ferromagnetic on the magnitude of the magnetic field and its wave form in two orthogonal directions. The dependence of losses on the magnetic induction under condition of rotational magnetization is in good agreement with known experimental data. References 17, figures 5.
References
Arkadiev V.K. The theory of electromagnetic field in ferromagnetic metal // Zhurnal russkogo fizicheskogo obshchestva. – 1913. – № 45. – Pp. 312–344. (Rus)
Vonsovskiy S.V. The magnetism. – Moskva: Nauka, 1984. – 208 p. (Rus)
Zirka S.E., Moroz Yu.I., Moroz E.Yu. An inverse model of magnetic hysteresis // Tekhnichna elektrodynamika. – 2010. – №4. – Pp. 3–7. (Rus)
Kalantarov P.L., Neyman L.R. Theoretical fundamentals of electrical engineering. – Leningrad-Moskva: Gosenergoizdat, 1951. – 464 p. (Rus)
Neіman L.R. The skin effect in ferromagnetic medium. – Moskva-Leningrad: Gosenergoizdat, 1949. – 190 p. (Rus)
Petukhov I.S. Finite element modelling of the alternating electromagnetic field in ferromagnetic conductive medium // Tekhnichna elektrodynamika. – 2008. – № 4. – Pp. 18–26. (Rus)
Baily F.G. The hysteresis of iron and steel in a rotating magnetic field // Phil. Trans. Royal Soc. A. – 1896. – Vol. 187. – Pp. 715–746.
Dlala E., Belahcen A., Fonteyn K., Belkasim M. Improving loss properties of the Mayergoyz vector hysteresis model / Hysteresis Modeling And Micromagnetics. – 2009. – NIST, Gaithersburg, Maryland, USA. – 101 p.
Enokizono M. Vector Magnetic Property and Magnetic Characteristic Analysis by Vector Magneto Hysteretic E&S Model // IEEE Trans. on Magnetics. – 2009. – Vol. 45. – No. 3. – Pp. 1148–1153.
Ivanyi A. Hysteresis in rotation magnetic field // Physica B-Condensed Matter. – 2000. – Vol. 275. – No.1– 3. – Pp. 107–113.
Jiles D.C., Atherton D.L. Theory of ferromagnetic hysteresis // Journal of Magnetism and Magnetic Materials. – 1986. – Vol. 61. – Pp. 48–60.
Matsuo T. Comparison of Rotational Hysteretic Properties of Isotropic Vector Stop Models // IEEE Trans. on Magnetics. – 2009. – Vol. 45. – No. 3. – Pp. 1194–1197.
Mayergoyz I.D. Mathematical models of hysteresis. – N.Y.: Springer-Verlag, 1991. – 207 p.
Preisach F. Uber die magnetische Nachwirkung // Zeitschrift fur Physik. – 1935. – No. 94. – Pp. 277–302.
Stoner E., Wohlfarth E. A mechanism of magnetic hysteresis in heterogeneous alloys // IEEE Trans. On Magn. – 1991. – Vol. 27. – Pp. 3475–3518.
Yanli Zhang, Young Hwan Eum, Wei Li, Dexin Xie, Chang Seop Koh. An Improved Modeling of Vector Magnetic Properties of Electrical Steel Sheet for FEM Application and Its Experimental Verification // IEEE Trans. On Magnetics. – 2009. – Vol. 45. – No. 3. – Pp. 1162–1165.
Zirka S.E., Moroz Yu.L., Marketos P., Moses A.J., Jiles D.C., Matsuo T. Generalization of the classical method for calculating dynamic hysteresis loops in grain-oriented electrical steels // IEEE Transactions on Magnetics. – 2008. – Vol. 44. – No. 9. – Pp. 2113–2126.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Array