Abstract
Systems, which contain electromagnetic shields with complex shape, have been considered. Numerical relations that allow choosing of electromagnetic shields parameters in dependence on the necessary screening characteristics, have been found. It is shown how to achieve efficient screening of different regions by changing shield's configuration or number of its layers. References 10, tables 3, figures 5.
References
Koshliakov N.C., Gliner E.B., Smirnov M.M. Equestions in partial derivatives of mathematical phisics. – Moskva: Vysshaya shkola, 1970. – 710 p. (Rus)
Rezinkina M.M. Using of numerical calculations for choice of screening means against magnetic field action // Zhurnal Tekhnicheskoi Fiziki. – 2007. – Vol. 77. – No 11. – Pp. 17–24. (Rus)
Rezinkina M.M. Numerical calculation low-frequency magnetic field in screening means // Tekhnichna elektrodynamika. – 2008. – No 6. – Pp. 18–23. (Rus)
Samarskii A.A. Difference scheme theory. – Moskva: Nauka, 1989. – 616 p. (Rus)
Stretton J. A. Electromagnetic theory. – Moskva-Leningrad: OGIZ Gostechizdat, 1948. – 539 p. (Rus)
Tozoni O.V. Secondary power supply method in electrical engineering. – Moskva: Energiya, 1975. – 295 p. (Rus)
Shapiro D.N. Basis of electromagnetic screening. – Leningrad: Energiia, 1975. – 109 p. (Rus)
Clemens M., Weiland T. Regularization of Eddy Current Formulations Using Discrete Grad-Div Operators // IEEE Trans. on Magnetics. 2002. Vol. 38. No 2. Pp. 569-572.
Clemens M., Wilke M., Weiland T. Linear-Implicit Time Integration Schemes for Error-Controlled Transient Nonlinear Magnetic Field Simulations // IEEE Transactions on Magnetics. 2003. Vol. 39. No 3. Pp. 1175-1178.
Taflove A., Hagness S. Computational electrodynamics: the finite difference time domain method. Boston – London: Artech House, 2000. 852 p.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Array