CALCULATION CHOICE OF PARAMETERS OF ELECTROMAGNETIC SCREENS OF COMPLICATED THREE-DIMENSIONAL CONFIGURATION
ARTICLE_2_PDF (Українська)

Keywords

reduction factor
electromagnetic shield
low-frequency magnetic field
finite volume method
uniaxial perfectly matched layer эффективность экранирования
электромагнитный экран
низкочастотное магнитное поле
метод конечных объемов
одноосно хорошо согласованный слой

How to Cite

[1]
Резинкина, М., Щерба, А., Гринченко, В. and Резинкина, К. 2012. CALCULATION CHOICE OF PARAMETERS OF ELECTROMAGNETIC SCREENS OF COMPLICATED THREE-DIMENSIONAL CONFIGURATION. Tekhnichna Elektrodynamika. 1 (Jan. 2012), 010.

Abstract

Systems, which contain electromagnetic shields with complex shape, have been considered. Numerical relations that allow choosing of electromagnetic shields parameters in dependence on the necessary screening characteristics, have been found. It is shown how to achieve efficient screening of different regions by changing shield's configuration or number of its layers. References 10, tables 3, figures 5.

ARTICLE_2_PDF (Українська)

References

Koshliakov N.C., Gliner E.B., Smirnov M.M. Equestions in partial derivatives of mathematical phisics. – Moskva: Vysshaya shkola, 1970. – 710 p. (Rus)

Rezinkina M.M. Using of numerical calculations for choice of screening means against magnetic field action // Zhurnal Tekhnicheskoi Fiziki. – 2007. – Vol. 77. – No 11. – Pp. 17–24. (Rus)

Rezinkina M.M. Numerical calculation low-frequency magnetic field in screening means // Tekhnichna elektrodynamika. – 2008. – No 6. – Pp. 18–23. (Rus)

Samarskii A.A. Difference scheme theory. – Moskva: Nauka, 1989. – 616 p. (Rus)

Stretton J. A. Electromagnetic theory. – Moskva-Leningrad: OGIZ Gostechizdat, 1948. – 539 p. (Rus)

Tozoni O.V. Secondary power supply method in electrical engineering. – Moskva: Energiya, 1975. – 295 p. (Rus)

Shapiro D.N. Basis of electromagnetic screening. – Leningrad: Energiia, 1975. – 109 p. (Rus)

Clemens M., Weiland T. Regularization of Eddy Current Formulations Using Discrete Grad-Div Operators // IEEE Trans. on Magnetics. 2002. Vol. 38. No 2. Pp. 569-572.

Clemens M., Wilke M., Weiland T. Linear-Implicit Time Integration Schemes for Error-Controlled Transient Nonlinear Magnetic Field Simulations // IEEE Transactions on Magnetics. 2003. Vol. 39. No 3. Pp. 1175-1178.

Taflove A., Hagness S. Computational electrodynamics: the finite difference time domain method. Boston – London: Artech House, 2000. 852 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Array

Abstract views: 85 | PDF Downloads: 7

Downloads