Анотація
У роботі обґрунтовано еквівалентність визначення повної потужності багатофазної системи електроживлення з різними опорами лінії передачі за методом Фриза-Бухгольца-Деппенброка та в скороченому координатному базисі. Запропоновано дві енергоефективні стратегії керування паралельною активною фільтрацією у скороченому координатному базисі. Перша стратегія забезпечує одиничне значення коефіцієнта потужності, а друга – мінімізує потужність втрат в лінії передачі під час дотриманя симетрії та квазісинусоїдної форми споживаних струмів. Перевагами використання скороченого координатного базису є зменшення кількості датчиків і ключових регуляторів активних фільтрів, а також відсутність проблеми організації точки штучного заземлення для вимірювання напруг. Визначено та верифіковано коригувальний коефіцієнт для формул повної потужності та коефіцієнта потужності за наявності обмежень на симетричну та синусоїдну форму споживаних струмів. Бібл. 22, рис. 5, табл. 2.
Посилання
Adrian A. Adăscălitei, Alexander E. Emanuel. Evolution of the Electric Power Componensation Definitions. Annals of the University of Craiova, Electrical Engineering series. 2015. No 39. Pp. 206–211.
Jacques L. Willems, Jozef A. Ghijselen. The Relation between the Generalized Apparent Power and the Voltage Reference. L’Energia Elettrica. 2004. Vol. 81. Pp. 37–45.
Jeon S.J. Definitions of Apparent Power and Power Factor in a Power System Having Transmission Lines With Unequal Resistances. IEEE Transactions on Power Delivery. 2005. Vol. 20. No 3. Pp. 1806–1811. DOI: https://doi.org/10.1109/TPWRD.2005.848658.
Czarnecki L.S. Currents’ Physical Components (CPC) concept: a fundamental of Power Theory. Przegląd Elektrotechniczny. 2008. Vol. 84. No 6. Pp. 28–37.
Cristaldi L., Ferrero A., Superti Furga G. Power and Current Decompositions into Time- and Frequency-Domain Components: Analysis and Comparison. ETEP. September/October 1994. Vol. 4. No 5. Pp 359–367. DOI: https://doi.org/10.1002/etep.4450040507.
Calamaro N., Beck Y., Shmilovitz D. A review and insights on Poynting vector theory and periodic averaged electric energy transport theories. Renewable and Sustainable Energy Reviews. 2015. Vol. 42. Pp. 1279–1289. DOI: https://doi.org/10.1016/j.rser.2014.10.065.
Seong-Jeub Jeon. Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra. Transactions of the Korean Institute of Electrical Engineers. 2009. Vol. 58. No10. Pp. 2064–2070.
Zhemerov G., Ilina N., Tugay D. The theorem of minimum energy losses in three-phase four-wire energy supply system. IEEE 2nd International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, Ukraine, June 7-11, 2016. Pp. 1–3. DOI: https://doi.org/10.1109/IEPS.2016.7521889.
Canturk S., Balci M.E., Hocaoglu M.H. On the Definition of Apparent Power. Electrical Power Quality and Utilisation. Electrical Power Quality and Utilisation. 2015. Vol. 18. No 2. Pp. 1–9.
IEEE Std. 1459-2010 Definitions for the measurement of electric power quantities under sinusoidal non-sinusoidal, balanced or unbalanced conditions. 2010. DOI: https://doi.org/10.1109/IEEESTD.2010.5439063.
Majordomo J.G., Usaola J. Apparent Power and Power Factor Definitions for Polyphase Non-Linear Loads when Supply Conductors Present Different Resistances. European Trans. on Electrical Power. 1993. Vol. 3. No 6. Pp. 415–420. DOI: https://doi.org/10.1002/etep.4450030604.
Depenbrock M. The FBD-method, a generally applicable tool for analyzing power relations. IEEE Trans. On Power Systems. May 1993. Vol. 8. No 2. Pp. 381–387. DOI: https://doi.org/10.1109/59.260849.
Artemenko M.Y. Apparent power of a three-phase power supply system in a non-sinusoidal mode and energy efficiency of shunt active filtration facilities. Electronics and communications. 2014. No 6. Pp. 38–47. DOI: https://doi.org/10.20535/2312-1807.2014.19.6.112910.
Artemenko M.Yu., Mykhalskyi V.M., Polishchuk S.Y. Determination of the apparent power of three-phase power supply systems as a theoretical basis for the construction of energy-efficient means of shunt active filtration. Tekhnichna Elektrodynamika. 2017. No 2. Pp. 25–34. DOI: https://doi.org/10.15407/techned2017.02.025. (Ukr)
Artemenko M.Yu., Polishchuk S.Y., Mykhalskyi V.M., Shapoval I.A. Apparent Power Decompositions of Three-Phase Power Supply System to Develop Control Algorithms of Shunt Active Filter. Proceedings of the IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, May 29–June 2, 2017. Pp. 495–499. DOI: https://doi.org/10.1109/UKRCON.2017.8100537.
Artemenko M., Batrak L., Polishchuk S. New definition formulas for apparent power and active current of three-phase power system. Przeglad Elektrotechniczny. 2019. No 95(8). Pp. 81–85. DOI: https://doi.org/10.15199/48.2019.08.20.
Artemenko M.Yu., Kutafin Yu.V., Mykhalskyi V.M., Polishchuk S.Y., Chopyk V.V., Shapoval I.A. Energy-efficient strategies of power active filtration based on optimal decompositions of load currents and corresponding loss capacities. Tekhnichna Elektrodynamika. 2020. No 3. Pp. 30–35. DOI: https://doi.org/10.15407/techned2020.03.030. (Ukr)
Artemenko M.Yu., Mykhalskyi V.M., Shapoval I.A. The theory of active filtration of multiphase power supply systems, aimed at minimizing the power loss in the transmission line. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2021. 235 p. (Ukr)
Artemenko M.Yu., Chopyk V.V., Mykhalskyi V.M., Polishchuk S.Y., Shapoval I.A. Apparent Power and Energy Characteristics of a Multiphase Power Supply System. Proceedings of the IEEE 5th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, September 27-30, 2023. Pp. 1-4. DOI: https://doi.org/10.1109/MEES61502.2023.10402496.
Fryze S. Moc czynna, bierna i pozorna układu 3–fazowego o odkształconych przebiegach napięć fazowych i prądów przewodowych. Wybrane zagadnienia teoretycznych podstaw elektrotechniki. 1966. Pp. 250–256.
Malengret M., Gaunt C.T. Active Currents, Power Factor, and Apparent Power for Practical Power Delivery Systems. IEEE Access. 2020. Vol. 8. Pp. 133095–133113. DOI: https://doi.org/10.1109/ACCESS.2020.3010638.
Rodríguez P., Teodorescu R., Candela I., Timbus A.V., Liserre M., Blaabjerg F. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions. 37th IEEE Power Electronics Specialists Conference (PESC’06), Jeju, Korea (South), 18-22 June 2006. Pp. 1–7. DOI: https://doi.org/10.1109/pesc.2006.1712059.
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Авторське право (c) 2024 Array