RESONANT MODES OF A LINEAR PERMANENT MAGNET VIBRATORY MOTOR
ARTICLE_5_PDF

Keywords

electrical resonance
electromechanical analogy approach
energy characteristics
finite element method
linear permanent magnet motor електричний резонанс
енергетичні характеристики
лінійний магнітоелектричний двигун
, метод електромеханічних аналогій
метод скінченних елементів

How to Cite

[1]
Bondar, R. 2022. RESONANT MODES OF A LINEAR PERMANENT MAGNET VIBRATORY MOTOR. Tekhnichna Elektrodynamika. 2022, 4 (Jul. 2022), 028. DOI:https://doi.org/10.15407/techned2022.04.028.

Abstract

The work considers the resonant operation modes of the linear permanent magnet vibratory motor. On the basis of electrical and mechanical equivalent circuits with lumped parameters, expressions for determining the frequencies of mechanical, electrical, energy and power resonances are obtained. The presence of two frequencies of electrical resonance (when the phases of supply voltage and motor current coincide) in a single-mass electromechanical system and four in a two-mass one is substantiated. Representing, according to the electromechanical analogy approach, the back EMF induced due to the movement of the mover by the corresponding voltage drop, expressions for equivalent mechanical impedances are obtained. The dependences of the energy characteristics of the motor (mechanical work and efficiency) on the equivalent circuit parameters are obtained. Based on the expression for the reluctance electromagnetic force, mechanical work is found and its dependence on the phase difference between displacement and current is shown. The phase difference at which the total mechanical work of the motor is maximal is determined. It is shown that the results of the analysis of resonant modes well agree with results of a numerical field study carried out on the basis of the equations of the quasi-stationary magnetic field in the time domain using the finite element method and the moving type of calculation mesh in the mover region. References 12, figures 6, tables 1.

https://doi.org/10.15407/techned2022.04.028
ARTICLE_5_PDF

References

Gieras J.F., Piech Z.J., Tomczuk B. Linear synchronous motors. Transportation and automation systems. CRC Press, 2012. 520 p.

Won-jong K., Murphy B.C. Development of a novel direct-drive tubular linear brushless permanent-magnet motor. 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference. 2003. Vol. 3. Pp. 1664-1671. DOI: https://doi.org/10.1109/IAS.2003.1257779.

Lu H., Zhu J., Guo Y. Development of a slotless tubular linear interior permanent magnet micromotor for robotic applications. IEEE Transactions on Magnetics. 2005. Vol. 41. No 10. Pp. 3988-3990. DOI: https://doi.org/10.1109/TMAG.2005.855158.

Akhondi H., Milimonfared J. Design and optimization of tubular permanent magnet linear motor for electric power steering system. Journal of Asian Electric Vehicles. 2009. Vol. 7. No 2. Pp. 1283-1289. DOI: https://doi.org/10.4130/jaev.7.1283.

Cherno O.O., Monchenko M.Yu. Energy efficiency of the vibratory device electromagnetic drive system. Tekhnichna Elektrodynamika. 2016. No 1. Pp. 20-25. DOI: https://doi.org/10.15407/techned2016.01.020.

Bondar R.P., Podoltsev A.D. Complex model with frequency dependent parameters for electrodynamic shaker characteristics. Tekhnichna Elektrodynamika. 2017. No 1. Pp. 44-51. (Ukr). DOI: https://doi.org/10.15407/techned2017.01.044.

Tsutomu M., Takuya Y., Masaki T., Makoto U., Hideo Y., Kouyou S., Hajime Y. A novel efficiency meas-urement of moving-magnet-type linear oscillatory actuator. International Journal of Applied Electromagnetics and Mechanics. 2002. Vol. 15. No 1-4. Pp. 163-167. DOI: https://doi.org/10.3233/JAE-2002-438

Bondar R.P. Research of the magnetoelectric linear oscillatory motor characteristics during the work on elastoviscous loading. Electrical engineering & electromechanics. 2019. No 1. Pp. 9-16. (Ukr). DOI: https://doi.org/10.20998/2074-272X.2019.1.02.

Wang J. Performance evaluation of fractional-slot tubular permanent magnet machines with low space harmonics. Archives of Electrical Engineering. 2015. Vol. 64. No 4. Pp. 655-668. DOI: https://doi.org/10.1515/aee-2015-0049.

Yatchev I., Gueorgiev V., Ivanov R., Hinov K. Simulation of the dynamic behaviour of a permanent magnet linear actuator. Facta universitatis - series: Electronics and Energetics. 2010. Vol. 23. No 1. Pp. 37-43. DOI: https://doi.org/10.2298/FUEE1001037Y.

Bondar R.P. Optimization approach to determination of constructional parameters of a linear permanent magnet vibratory motor. Tekhnichna Elektrodynamika. 2022. No 1. Pp. 33-40. (Ukr). DOI: https://doi.org/10.15407/techned2022.01.033.

Comsol Multiphysics. URL: http://www.comsol.com/ (accessed at 06.04.2022).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 225 | PDF Downloads: 181

Downloads

Download data is not yet available.