ГРАНИЧНЫЕ УСЛОВИЯ ПРИ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ ВНУТРИ И ВНЕ РАЗРЯДНОЙ КАМЕРЫ ВЫСОКОВОЛЬТНОЙ ЭЛЕКТРОГИДРАВЛИЧЕСКОЙ УСТАНОВКИ
ARTICLE_6_PDF

Ключові слова

electrical discharge
capacitor
discharge channel in the water
the mathematical model
electromagnetic field
electrohydraulic installation
boundary conditions электрический разряд
конденсатор
разрядный канал в воде
математическая модель
электромагнитное поле
электрогидравлическая установка
граничные условия

Як цитувати

[1]
Косенков, В. і Бычков , В. 2016. ГРАНИЧНЫЕ УСЛОВИЯ ПРИ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ ВНУТРИ И ВНЕ РАЗРЯДНОЙ КАМЕРЫ ВЫСОКОВОЛЬТНОЙ ЭЛЕКТРОГИДРАВЛИЧЕСКОЙ УСТАНОВКИ . ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА. 3 (Квіт 2016), 025. DOI:https://doi.org/10.15407/techned2016.03.025.

Анотація

Определены особенности задания граничных условий при математическом моделировании электромагнитного поля (ЭМП) высоковольтной электрогидравлической установки в конечном объеме расчетной области за пределами разрядной камеры. Их использование при расчете ЭМП внутри и вне разрядной камеры позволяет получать распределение поля, эквивалентное распределению ЭМП при использовании точных граничных условий на бесконечности – ошибка составляет не более 5%. Разработана математическая модель и алгоритм решения полученной системы уравнений на основе численных методов. Верификация модели и алгоритма выполнена на задачах, допускающих точные решения.  Библ. 20, рис. 4.

https://doi.org/10.15407/techned2016.03.025
ARTICLE_6_PDF

Посилання

Binns K., Laurenson P. Analysis and computation of electrical and magnetic field problems. – Moskva: Energiia, 1970. – 376 p. (Rus)

Vovchenko A.I., Tertilov R.V. Synthesis of capacitive non-linear- parametrical energy sources for discharge-pulse technologies // Zbirnyk naukovykh pratz Natsionalnoho Universytetu Korablebuduvannia. – 2010. – No 4. – Pp. 118–124. (Rus)

Darevsky A.I., Kukharkin Ye.S. Theoretical foundations of electrical engineering. Part 2. – Moskva:Vysshaia shkola, 1965. – 284 p. (Rus)

Demirchan K.S., Chechurin V.L. Machine calculations of electromagnetic fields. – Мoskva: Vysshaia shkola, 1986. – 240 p. (Rus)

Kosenkov V.M. Influence of the length of the channel of a high-voltage discharge in water on the efficiency of plastic deformation of a cylindrical shell // Zhurnal Tekhnicheskoi Fiziki. – 2011. – Vol. 81. – No 10. – Pp. 133–139.

Kutarev A.M., Zhurkin M.I. Comparison of the calculated magnetic field by the finite difference method with use of the vector and scalar potential of the magnetic field // Vestnik OGU. – 2005. – No 4. – Рp. 127–130. (Rus)

Lapik R.M., Martyshkin P.V. Calculation and measurements of the prototype magnet of the conversion system of VEPP-5 injection complex. – Novosibirsk: Institut Yadernoi Fiziki, 1999. – 33 р. (Rus)

Samarsky A.A., Gulin A.V. Numerical methods. – Moskva: Nauka, 1989. – 432 p. (Rus)

Stepanov R.A., Chupin A.V., Frik P.G. Screw dynamo in a torus // Vychislitelnaia Mekhanika Sploshnykh Sred. – 2008. – Vol. 1. – Pp. 109–117. (Rus)

Shcherba A.A., Suprunovska N.I. Synthesis of electrical circuits with capacitive energy storages in semiconductor powerful shapers of discharge pulses // Tekhnichna Elektrodynamika. – 2014. – No 1. – Pp. 3–11. (Rus)

Shcherba A.A., Suprunovska N.I. Regularities of increasing rate of current rise under loading at limiting its maximal values // Tekhnichna Elektrodynamika. – 2012. – No 5. – Pp. 3–10. (Rus)

Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Modeling of nonlinear resistance of electro-spark load for synthesis of discharge circuit of capacitor by time parameters // Tekhnichna Elektrodynamika. – 2014. – No 3. – Pp. 12–18. (Rus)

Shcherba A.A., Suprunovska N.I., Synytsyn V.K., Ivashchenko D.S. Aperiodic and Oscillatory Processes of Capacitor Discharge at Forced Limitation of Duration // Tekhnichna Elektrodynamika. – 2012. – No 3. – Pp. 9–10. (Rus)

Dimbylow P.J. Corrent densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields // Phys. Med. Biol. – 2000. – No 45. – Pp. 1013–1022.

Gillard A., Golovashchenko S., Mamutov A. Effect of quasi-static prestrain on the formability of dual phase steels in electrohydraulic forming // Journal of Manufacturing Processes. – 2013. – Vol. 15. – Pр. 201–218.

Golovashchenko S.F., Gillard A., Mamutov A., Bonnen J., Tang Z. Electrohydraulic Trimming of Advanced and Ultra High Strength Steels // Journal of Materials Processing Technology. – 2014. – Vol. 214. – Pр. 1027–1043.

Kosenkov V.M., Bychkov V.M. Mathematical modeling of transient processes in the discharge circuit and chamber of an electrohydraulic installation // Surface Engineering and Applied Electrochemistry. – 2015. – Vol. 51. – No 2. – Рp. 167–173.

Rezinkina, M., Bydianskaya, E., Shcherba, A. Alteration of brain electrical activity by electromagnetic field // Environmentalist. – 2007. – Vol. 27. – Nо 4. – Pp. 417–422.

Shcherba A.A., Kosenkov V.M., Bychkov V.M. Mathematical closed model of electric and magnetic fields in the discharge chamber of an Electrohydraulic installation // Surface Engineering and Applied Electrochemistry. – 2015. – Vol. 51. – No 6. – Рp. 581–588.

Taflove A., Hagness S. Computational electrodynamics: the finite difference time domain method. – Boston; London: Artech House. – 2000. – 852 p.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2022 Array

Переглядів анотації: 11 | Завантажень PDF: 3

Завантаження

Дані завантаження ще не доступні.