REGULATIONS OF THE FORMATION OF PROTECTIVE POTENTIAL OF UNDERGROUND STEEL PIPELINES UNDER CONDITIONS OF HETEROGENEOUS ENVIRONMENT
ARTICLE_3_PDF

Keywords

underground pipelines
electrochemical corrosion
cathodic protection
protective anode
electrochemical protection complex
protective potential підземні трубопроводи
електрохімічна корозія
катодний захист
захисний анод
комплекс електрохімічного захисту
захисний потенціал

How to Cite

[1]
Aziukovskyi О., Papaika, Y. , Gorev, V. and Babenko, N. 2024. REGULATIONS OF THE FORMATION OF PROTECTIVE POTENTIAL OF UNDERGROUND STEEL PIPELINES UNDER CONDITIONS OF HETEROGENEOUS ENVIRONMENT. Tekhnichna Elektrodynamika. 2 (Apr. 2024), 023. DOI:https://doi.org/10.15407/techned2024.02.023.

Abstract

In the work, the modeling of the distribution of the protective potential of electrochemical protection stations is performed by revealed functional dependencies. The initial conditions are adopted for a typical assortment of rolled metal used for underground gas supply. At the initial stage of modeling, the stochastic nature of the change in soil parameters is not taken into account. The distribution of the protective potential of the underground pipeline as a function of two variables (time and distance) showed the mutual influence of neighboring stations on the formation of protective zone. New dependences of the operating parameters of the electrotechnical complex of electrochemical protection on the set of variables characterizing the power source, the physical dimensions of pipeline and the alternative arrangement of active cathodic protection stations (CPS) were obtained. Experimental studies of the modes of electrochemical protection stations at the objects of the gas transportation system of Ukraine confirmed the adequacy of the proposed analytical models. References 16, Figures 3.

https://doi.org/10.15407/techned2024.02.023
ARTICLE_3_PDF

References

Strizhevskij I.V., Dmitriev V.I. Theory and calculation of the influence of an electrified railway on underground metal structures. Moskva: Izdatelstvo stroitelnoi literatury, 1967. 249 p. (Rus).

Kulikov P., Aziukovskyi O., Vahonova O., Bondar O., Akimova L., Akimov O. Postwar Economy of Ukraine: Innovation and Investment Development Project. Economic Affairs. 2022. Vol. 67. No 5. Pp. 943–959. DOI: https://doi.org/10.46852/0424-2513.5.2022.30.

Montanari G.C., Fabiani D., Morshuis P., Dissado L. Why residual life estimation and maintenance strategies for electrical insulation systems have to rely upon condition monitoring. IEEE Transaction on Dielectrics and Electrical Insulation. 2016. Vol. 23(3). Pp. 1375–1385. DOI: https://doi.org/10.1109/TDEI.2015.005613.

Kucheriava I.M. Potential means for mitigation of magnetic field generated by underground power cables in polyethylene pipes made of composite magnetic material. Tekhnichna Elektrodynamika. 2023. No 3. Pp. 3–12. DOI: https://doi.org/10.15407/techned2023.03.003 (Ukr).

Aziukovskyi A. The electrochemical cathodic protection stations of underground metal pipelines in uncoordinated operation mode. CRC Press. Balkema is an imprint of the Taylor & Francis Group, an informa business. London, UK, 2013. Pp. 47–55.

Shcherba M.A. Multi-physical processes during electric field disturbance in solid dielectric near water micro-inclusions con-nected by conductive channels. IEEE 2nd International Conference on Intelligent Energy and Power Systems (IEPS). Kyiv, Ukraine, June 7-11, 2016. Pp. 1–5. DOI: https://doi.org/10.1109/IEPS.2016.7521842.

Shcherba M., Shcherba A., Peretyatko Y. Mathematical Modeling of Electric Current Distribution in Water Trees Branches in XLPE Power Cables Insulation. Proc. IEEE 7th International Conference on Energy Smart Systems (ESS 2020). Kyiv, Ukraine, May 12-14, 2020. Pp. 353–356. DOI: https://doi.org/10.1109/ESS50319.2020.9160293.

Kyrylenko O.V., Shcherba A.A., Kucheriava I.M. Intellectual technologies for monitoring of technical state of up-to-date high-voltage cable power lines. Tekhnichna Elektrodynamika. 2021. No 6. Pp. 29–40. DOI: https://doi.org/10.15407/techned2021.06.029 (Ukr).

Shcherba A.A., Podoltsev O.D., Kucheriava I.M. The study of magnetic field of power cables in polyethylene pipes with magnetic properties. Tekhnichna Elektrodynamika. 2020. No 3. Pp. 15–21. DOI: https://doi.org/10.15407/techned2020.03.015 (Ukr).

Artemenko M.Yu., Batrak L.M., Polishchuk S.Y. Current Filtering in Three-Phase Three-Wire Power System at Asymmetric Sinusoidal Voltages. Proceedings of the IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). Kyiv, Ukraine, 24–26 April 2018. Pp. 611–616. DOI: https://doi.org/10.1109/ELNANO.2018.8477580.

Franchuk V.P., Ziborov K.A., Krivda V.V., Fedoriachenko S.O. Influence of thermophysical processes on the friction properties of wheel – rail pair in the contact area. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2018. No 2. Pp. 46–52. DOI: https://doi.org/10.29202/nvngu/2018-2/7.

Beshta O., Beshta D., Balakhontsev O., Khudoliy S. Energy saving approaches for mine drainage systems. Technical and Geoinformational Systems in Mining: School of Underground Mining. London: CRC Press, 2011. Pp. 29–32.

Pivnyak G., Beshta A., Balakhontsev A. Efficiency of water supply regulation principles. New Techniques and Technologies in Mining. London: CRC Press, 2011. Pp. 1-8. DOI: https://doi.org/10.1201/b113292.

Pivnyak G., Zhezhelenko I., Papaika Y. Estimating economic equivalent of reactive power in the systems of enterprise power supply. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2016. No 5. Pp. 62–66.

Pivnyak G., Rogoza M., Papaika Y., Lysenko A. Traction and energy characteristics of nocontact electric mining locomotives with AC current thyristor converters. Power Engineering, Control and Information Technologies in Geotechnical Systems. London: CRC Press, 2015. 220 p. DOI: https://doi.org/10.1201/b18475 .

Beshta A., Beshta A., Balakhontsev A., Khudolii S. Performances of asynchronous motor within variable frequency drive with additional power source plugged via combined converter. IEEE 6th International Conference on Energy Smart Systems (ESS). Kyiv, Ukraine, 17–19 April 2019. Pp. 156–160. DOI: https://doi.org/10.1109/ESS.2019.8764192.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Array

Abstract views: 92 | PDF Downloads: 48

Downloads

Download data is not yet available.