Abstract
The paper presents an iterative-parametric method for solving the equations of a weakly coupled circuit-field model of an induction motor (IM), which takes into account the effect of current displacement in the rotor. The method involves iterative solving of the equations of the circuit and field mathematical models by refining the parameters of the IM’s equivalent circuit and iteratively adjusting the calculated electromagnetic torque to account for the current displacement effect, based on equivalent currents in the conductive parts of the rotor. This approach enhances the accuracy of modeling electromagnetic processes in IMs during start-up modes. The method was verified through the simulation of start-up modes for IMs with a squirrel-cage rotor and IMs with massive ferromagnetic elements in the magnetic core, allowing for the evaluation of the impact of current displacement on the additional torque, which is used to adjust the calculated electromagnetic torque of the circuit model. The study also justified the need for adapting the finite element mesh to ensure calculation accuracy when the current displacement effect significantly influences the results. References 26, table 1, figures 4.
References
Pyrhonen J., Nerg J., Kurronen P., Lauber U. High-Speed High-Output Solid-Rotor Induction-Motor Technology for Gas Compression. IEEE Transactions on Industrial Electronics. 2010. Vol. 57. No 1. Pp. 272-280. DOI: https://doi.org/10.1109/TIE.2009.2021595.
Bastos J.P.A., Sadowski N. Electromagnetic Modeling by Finite Element Method. Marcel Dekker: New York, NY, USA, 2003. 510 p. DOI: https://doi.org/10.1201/9780203911174.
Vassent E., Meunier G., Foggia A. Simulation of induction machines using complex magnetodynamic finite element method coupled with the circuit equations. IEEE Transactions on Magnetics. 1991. Vol. 27. No 5. Pp. 4246-4249. DOI: https://doi.org/10.1109/20.105039
Vaskovsky Yu.M. Field Analysis of Electric Machines. Kyiv: NTUU KPI, 2007. 192 p.(Ukr)
Pyrhonen J., Jokinen T., Hrabovcova V.P. Design of Rotating Electrical Machines. John Wiley & Sons: Hoboken, 2014. 616 p.
Carlos A.C. Wengerkievicz, Ricardo de A. Elias, Nelson J. Batistela, Nelson Sadowski, Patrick Kuo-Peng. Estimation of Three-Phase Induction Motor Equivalent Circuit Parameters from Manufacturer Catalog Data. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2017. Vol. 16. No 1. DOI: https://doi.org/10.1590/2179-10742017v16i1873.
Kopylov I.P., Klokov B.K., Moroxkin V.P., Tokarev B.F. Design of Electric Machines. Moskva: Yurait, 2011. 767 p. (Rus)
Ali W.H., Abood S.J., Sadiku M.N.O. Fundamentals of Electric Machines, CRC Press: Boca Raton, FL, USA, 2019. 410 p. DOI: https://doi.org/10.1201/9780429290619.
Levy W., Landy C.F., McCulloch M.D. An accurate model for the simulation of the deep bar effect in induction motors. Transactions of the South African Institute of Electrical Engineers. 1990. Vol. 81. No 1. Pp. 38-44.
Deleanu S., Ng G., Iordache M., Galan N., Stǎnculescu M., Cazacu E. Operation analysis of a three-phase induction motor with deep rotor bars and variable parameters. International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 20-22 October 2022. Pp. 161-166. DOI: https://doi.org/10.1109/EPE56121.2022.9959822.
Rahimpour E., Rashtchi V., Pesaran M. Parameter identification of deep-bar induction motors using genetic algorithm. Electrical Engineering. 2007. Vol. 89. Pp. 547-552. DOI: https://doi.org/10.1007/s00202-006-0039-x.
Staszak J. Solid-Rotor Induction Motor Modeling Based on Circuit Model Utilizing Fractional-Order Derivatives. Energies. 2022. Vol. 15(17). Pp. 1-16. DOI: https://doi.org/10.3390/en15176371.
Popovych, O.M., Holovan, I.V. Refinement of the analysis of operating modes of induction motors in electromechatronic systems by equivalenting their field models with circuit models. Tekhnichna elektrodynamika. 2014. No 5. Pp. 113-115. (Ukr)
Popovych, O.M., Holovan, I.V. Determination of the parameters of the induction motor equivalent circuit and their nonlinear dependencies based on field analysis results. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2012. Vyp. 31. Pp. 38-48. (Ukr)
Popovych O.M., Golovan І.V. Study of starting regimes of induction motors using equivalent parameters of quasi-3d field model. Tekhnichna Elektrodynamika. 2019. No 1. Pp. 34-37. DOI: https://doi.org/10.15407/techned2019.01.034.
Golovan I., Popovych O. Circuits-Field Aproach to Mathematical Modeling of Induction Motors for the Purposes of Optimal Design. IEEE 5th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 27-30 September 2023. Pp. 1-4. DOI: https://doi.org/10.1109/MEES61502.2023.10402409.
Podoltsev A.D., Kucheriavaia I.N. Multiphysical Modeling in Electrical Engineering. Monograph. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2015. 305 p. (Rus)
Golovan І.V. The parametrazation method of generalized induction motor using the field analysis for design. Tekhnichna Elektrodynamika. 2019. No 5. Pp. 49-53. DOI: https://doi.org/10.15407/techned2019.05.049.
Voldek A.I. Electric Machines. Textbook for Students of Higher Technical Educational Institutions. Leningrad: Energiia, 1978. 832 p. (Rus)
Repo A.-K., Niemenmaa A., Arkkio A. Estimating circuit models for a deep-bar induction motor using time harmonic finite element analysis. International Conference in Electrical Machines, Crete, Greece, September 2006. No 614. Pp. 105-112.
Ivanov-Smolenksy A.V. Electric Machines. Vol. 1: Textbook for Universities. Moskva: MEI Publishing House, 2004. 656 p. (Rus)
Zadachyn V.M., Koniushenko I.H. Numerical Methods: Textbook. Kharkiv: S. Kuznets KhNEU Publishing, 2014. 180 p. (Ukr)
Malyar V.S., Hamola O.Ye., Maday V.S. Modelling of dynamic modes of an induction electric drive at periodic load. Electrical engineering & electromechanics. 2020. No 3. Pp. 9-14. DOI: https://doi.org/10.20998/2074-272X.2020.3.02.
Popovych, O.M. Mathematical Model for the Study of Operating Modes of Induction Machines in Electromechatronic Systems. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2010. Vyp. 25. Pp. 89-97. (Ukr)
Lishchenko A.I., Lesnyk V.A., Farenyuk A.P., Druzhynin O.B. Experimental Study of Operating and Starting Characteristics of Induction Motors with a Massive Ferromagnetic Rotor. Preprint-436. Kyiv: Institute of Electrodynamics National Academy of Sciences of the Ukrainian SSR, 1985. 31 p. (Rus)
Holovan I.V. Determination of Losses Caused by Higher Harmonics of the Electromagnetic Field in an Induction Motor. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2016. Vyp. 44. Pp. 82-88. (Ukr)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array