Abstract
The purpose of the research under consideration is to develop a mathematical model to calculate the trajectories of the ferromagnetic operating elements (millstones) of an electromagnetic mill, moving in a rotating magnetic field under electrodynamic and hydrodynamic resistance forces being limited by the space of the mill’s working chamber. The millstone motion is described through the equations of plane motion of arbitrary-shaped two-dimensional body. The driving forces of this motion are determined on the basis of the approximation of the tabulated functions connecting the module and the orientation of the equivalent force applied to the millstone, with its position in the working chamber and composite MMF phase of mill inductor winding. These tabulated functions are derived from the estimation of the magnetic field inside a working chamber with millstones, in two-dimensional quasi-stationary approximation, using FEM analysis. The publication contains the approximation algorithm for these tabulated vector functions of a vector argument, mathematical statement of millstones trajectories calculating, and analysis of mathematical experiments results that make it possible to evaluate the adequacy of the model. The developed tool enables conducting quantitative analysis of grinding/mixing process and will help to establish relationships between the electromagnetic mill design parameters and its performance. References 21, figures 6.
References
Ogonowski S., Wolosiewicz-Glab M., Ogonowski Z., Foszcz D., Pawelczyk M. Comparison of wet and dry grinding in electromagnetic mill. Minerals. 2018. No 8(4). 138. DOI: https://doi.org/10.3390/min8040138
Ogonowski S., Ogonowski Z., Pawelczyk M., Multi-objective and multi-rate control of the grinding and classification circuit with electromagnetic mill. Applied Sciences. 2018. No 8(4). 506. DOI: https://doi.org/10.3390/app8040506
Ogonowski S., Ogonowski Z., Swierzy M. Power optimizing control of grinding process in electromagnetic mill. 21st International Conference on Process Control (PC), Strbske Pleso, 2017. Pp. 370-375. DOI: https://doi.org/10.1109/PC.2017.7976242
Styla S. Laboratory studies of an electromagnetic mill inductor with a power source. An International Quarterly Journal on Economics of Technology and Modelling Processes. 2017. Vol. 6. No 2. Pp. 109-114.
Wolosiewicz-Glab M., Foszcz D., Ogonowski S. Design of the electromagnetic mill and the air stream ratio model. IFAC-Papers OnLine. 2017. Vol. 50. Iss. 1. Pp. 14964-14969. DOI: https://doi.org/10.1016/j.ifacol.2017.08.2554 .
Garg A., Jasmine Siu Lee Lam, Gao L. Energy conservation in manufacturing operations: modelling the milling process by a new complexity-based evolutionary approach. Journal of Cleaner Production. 2015. Vol. 108. Pp. 34-45. DOI: https://doi.org/10.1016/j.jclepro.2015.06.043.
Wolosiewicz-Glab M., Pieta P., Niedoba T., Foszcz D. Approximation of Partition Curves for Electromagnetic Mill with Inertial Classifier–Case study. In IOP Conference Series: Earth and Environmental Science. 2017. Vol. 95. No 4. P. 042037. DOI: https://doi.org/10.1088/1755-1315/95/4/042037 .
Wolosiewicz-Glab M., Ogonowski S., Foszcz D., Gawenda T. Assessment of classification with variable air flow for inertial classifier in dry grinding circuit with electromagnetic mill using partition curves. Physicochem. Probl. Miner. Process. 2018. Vol. 54. No 2. Pp. 440-447. DOI: https://doi.org/10.5277/ppmp1867 .
Wolosiewicz-Glab M., Pieta P., Foszcz D., Ogonowski S., Niedoba T. Grinding Kinetics Adjustment of Copper Ore Grinding in an Innovative Electromagnetic Mill. Applied Sciences. 2018. No 8(8). 1322. DOI: https://doi.org/10.3390/app8081322
Buchczik D., Wegehaupt J., Krauze O. Indirect measurements of milling product quality in the classification system of electromagnetic mill. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR 2017). Międzyzdroje, Poland, August 28-31, 2017. Pp. 1039-1044. DOI: https://doi.org/10.1109/MMAR.2017.8046973
Wegehaupt J., Buchczik D., Krauze O. Preliminary studies on modelling the drying process in product classification and separation path in an electromagnetic mill installation. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR 2017). Międzyzdroje, Poland, August 28-31, 2017. Pp. 849-854. DOI: https://doi.org/10.1109/MMAR.2017.8046939
Wegehaupt J., Buchczik D. Moisture measurement of bulk materials in an electromagnetic mill. 18th International Carpathian Control Conference (ICCC). Sinaia, Romania, May 28-31, 2017. Pp. 353-358. DOI: https://doi.org/10.1109/CarpathianCC.2017.7970425
Budzan S. Automated grain extraction and classification by combining improved region growing segmentation and shape descriptors in electromagnetic mill classification system. 10th International Conference on Machine Vision (ICMV 2017). Vienna, Austria, 2017. Vol. 10696. P. 106960B. DOI: https://doi.org/10.1117/12.2309765
Styla S.A. New Grinding Technology Using an Electromagnetic Mill–Testing the Efficiency of the Process. EconTechMod. An International Quarterly Journal on Economics of Technology and Modelling Processes. 2017. Vol. 6. No 1. Pp. 81-88.
Krawczykowski D., Foszcz D., Ogonowski S., Gawenda T., Wolosiewicz-Glab M. Analysis of the working chamber size influence on the effectiveness of grinding in electromagnetic mill. In IOP Conference Series: Materials Science and Engineering. Zawiercie, Poland, September 26-29, 2018. Vol. 427. No 1. P. 012033. DOI: https://doi.org/10.1088/1757-899X/427/1/012033
Bazin C., St-Pierre M., Hodouin D. Calibration of the perfect mixing model to a dry grinding mill. Powder technology. 2005. Vol. 149(2-3). Pp. 93-105. DOI: https://doi.org/10.1016/j.powtec.2004.11.014
Całus D, Makarchuk O. Analysis of interaction of forces of working elements in electromagnetic mill. Przegland Electrotechniczny. 2019. No 12. Pp. 64-69. DOI: https://doi.org/10.15199/48.2019.12.12
Zucker R.D., Biblarz O. Fundamentals of gas dynamics. John Wiley & Sons, 2019. 540 p.
Benson D.J., Hallquist J.O. A simple rigid body algorithm for structural dynamics programs. International Journal for Numerical Methods in Engineering. 1986. Vol. 22(3). Pp. 723-749.
Hallquist J.O. LS-DYNA. Theory Manual. Livermore Software Technology Corporation, 2006. 680 p.
Hughes T.J.R., Taylor R.L., Sackman J.L., Curnier A.C., Kanoknukulchai W. A Finite Element Method for a Class of Contact-Impact Problems. J. Comp. Meths. Appl. Mechs. Eng. 1976. No 8. Pp. 249-276.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Array