EXCITATION OF A PULSE ELECTROMECHANICAL CONVERTER OF ELECTRODYNAMIC TYPE FROM A TWO-SECTION CAPACITOR ENERGY STORAGE
ARTICLE_8_PDF

Keywords

pulse electromechanical converter of electrodynamic type
mathematical model
sections of capacitive energy storage
efficiency criterion
experimental research імпульсний електромеханічний перетворювач електродинамічного типу
математична модель
дві секції ємнісного накопичувача енергії
критерій ефективності
експериментальні дослідження

How to Cite

[1]
Bolyukh, V. 2021. EXCITATION OF A PULSE ELECTROMECHANICAL CONVERTER OF ELECTRODYNAMIC TYPE FROM A TWO-SECTION CAPACITOR ENERGY STORAGE. Tekhnichna Elektrodynamika. 2 (Feb. 2021), 058. DOI:https://doi.org/10.15407/techned2021.02.058.

Abstract

A mathematical model of a pulsed electromechanical converter (PEC) of electrodynamic type has been developed, in which the solutions of the equations are presented in a recurrent form, which, when numerically implemented, allows taking into account the interrelated electrical, magnetic, mechanical and thermal processes and their nonlinear parameters.While maintaining the total energy of the pulsed source, the influence of the distribution of energy between the two sections of the capacitive energy storage (CES) and the voltage at which the additional section of the CES is connected was established. When operating in an accelerating mode, the largest amplitude of electrodynamic forces (EDF) and maximum speed occur in the basic version of the PEC, which is excited only from the main section of the CES, and the most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 2.61 higher than for the basic version of the PEC.When operating in the shock-power mode, compared with the basic version of the PEC, the amplitude of the EDF decreases. The most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 5.17 higher than that of the basic version of the PEC. Experimental studies of the PEC in the shock-power mode established that the oscillograms of the voltage of the CES and the current of the PEC correspond to the calculated characteristics, and their main indicators are consistent with each other with an accuracy of 5-7%. References 16, figures 6.

https://doi.org/10.15407/techned2021.02.058
ARTICLE_8_PDF

References

McNab I.R. A research program to study airborne launch to space. IEEE Transactions on Magnetics. 2007. Vol. 43. No 1. Pp. 486-490. DOI: 10.1109/TMAG.2006.887447.

Kondratenko I.P., Zhiltsov A.V., Paschin M.O., Vasyuk V.V. Choice of parameters of induction electromechanical converter for electrodynamic processing of welded joints. Tekhnichna Elektrodynamika. 2017. No 5. Pp. 83-88. DOI: https://doi.org/10.15407/techned2017.05.083. (Ukr).

Bissal A., Magnusson J., Engdahl G. Comparison of two ultra-fast actuator concept. IEEE Transactions on Magnetics. 2012. Vol. 48. No 11. Pp. 3315-3318. DOI: https://doi.org/10.1109/tmag.2012.2198447.

Kondratiuk M., Ambroziak L. Concept of the magnetic launcher for medium class unmanned aerial vehicles designed on the basis of numerical calculations. Journal of Theoretical and Applied Mechanics. 2016. Vol. 54. Issue 1. Pp. 163-177. DOI: https://doi.org/10.15632/jtam-pl.54.1.163.

Angquist L., Baudoin A., Norrga S. et al. Low-cost ultra-fast DC circuit-breaker: Power electronics integrated with mechanical switchgear. IEEE International Conference on Industrial Technology (ICIT). Lyon. 2018. Pp. 1708-1713. DOI: https://doi.org/10.1109/ICIT.2018.8352439.

Puumala V., Kettunen L. Electromagnetic design of ultrafast electromechanical switches. IEEE Transactions on Power Delivery. 2015. Vol. 30. No 3. Pp. 1104-1109. DOI: https://doi.org/10.1109/TPWRD.2014.2362996.

Vilchis-Rodriguez D.S., Shuttleworth R., Smith A.C. et al. A comparison of damping techniques for the soft-stop of ultra-fast linear actuators for HVDC breaker applications. The 9th International Conference on Power Electronics, Machines and Drives (PEMD), Liverpool, UK, 2018. Pp. 1-6. URL: https://www.research.manchester.ac.uk/portal/files/68110674/Soft_stop_techniques_full_paper_Final.pdf.

Soda R., Tanaka K., Takagi K., Ozaki K. Simulation-aided development of magnetic-aligned compaction process with pulsed magnetic field. Powder Technology. 2018. Vol. 329. No 15. Pp. 364-370. DOI: https://doi.org/10.1016/j.powtec.2018.01.035.

Horozha K.A., Podoltsev O.D., Troshchinsky B.A. Electromagnetic processes in a pulsed electrodynamic emitter for the excita-tion of elastic vibrations in concrete structures. Tekhnichna Elektrodynamika. 2019. No 3. Pp. 23-28. DOI: https://doi.org/10.15407/techned2019.03.023. (Ukr).

Bolyukh V.F., Oleksenko S.V., Shchukin I.S. Comparative analysis of linear pulse electromechanical converters electromagnetic and induction types. Tekhnichna Elektrodynamika. 2016. No 5. Pp. 46-48. DOI: https://doi.org/10.15407/techned2016.05.046 (Rus).

Bolyukh V.F., Kashanskyi Yu.V., Shchukin I.S. Comparative analysis of power and speed indicators of linear pulse electrome-chanical converters of electrodynamic and induction types. Tekhnichna Elektrodynamika. 2019. No 6. Pp. 35–42. DOI: https://doi.org/10.15407/techned2019.06.035 (Rus).

Bolyukh V.F., Vinnichenko A.I. Concept of an induction-dynamic catapult for a ballistic laser gravimeter. Measurement Tech-niques. 2014. Vol. 56. Issue 10. Pp. 1098-1104. DOI: https://doi.org/10.1007/s11018-014-0337-z.

Ivashin V.V., Ivannikov N.A. Induction-dynamic drive. Patent Russian Federation. 2013. No 2485614. (Rus).

Fan G., Wang Y., Xu Q., et al. Design and analysis of a novel three-coil reconnection electromagnetic launcher. IEEE transac-tions on plasma science. 2019. Vol. 47. No 1. Pp. 814-820. DOI: https://doi.org/10.1109/TPS.2018.2874287.

Bolyukh V.F., Katkov I.I. Influence of the form of pulse of excitation on the speed and power parameters of the linear pulse elec-tromechanical converter of the induction type. Proceedings ASME., Salt Lake City, Utah, USA, November 11–14, 2019. Vol. 2B: Advanced Manufacturing. No: IMECE2019-10388, V02BT02A047, 8 p. DOI: https://doi.org/10.1115/IMECE2019-10388.

Zhou Y., Huang Y., Wen W. et al. Research on a novel drive unit of fast mechanical switch with modular double capacitors. Journal of Engineering. 2019. Vol. 2019. Issue 17. Pp. 4345-4348. DOI: https://doi.org/10.1049/joe.2018.8148.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 165 | PDF Downloads: 48

Downloads