DECREASE OF TRANSIENTS DURATION AND IMPROVEMENT OF DYNAMIC CHARACTERISTICS OF ELECTRICAL DISCHARGE INSTALLATIONS BY CHANGING THE STRUCTURE OF THEIR DISCHARGE CIRCUIT
ARTICLE_3_PDF

Keywords

transient
capacitor
discharge
pulse current
duration
power перехідний процес
конденсатор
розряд
імпульсний струм
тривалість
потужність

How to Cite

[1]
Suprunovska, N. et al. 2020. DECREASE OF TRANSIENTS DURATION AND IMPROVEMENT OF DYNAMIC CHARACTERISTICS OF ELECTRICAL DISCHARGE INSTALLATIONS BY CHANGING THE STRUCTURE OF THEIR DISCHARGE CIRCUIT. Tekhnichna Elektrodynamika. 4 (Jun. 2020), 015. DOI:https://doi.org/10.15407/techned2020.04.015.

Abstract

The features of changing the duration and nature of transients in electric-discharge installations (EDIs) when shunting the discharge circuit of their capacitor with an additional RL-circuit instead of by regulating the voltage feedbacks are determined. The dependences of pulsed currents and powers in the load of such installations when changing their structure are studied. Based on the mathematical simulation, the appropriate values of the time delay of connecting an additional shunt RL-circuit after the start of the capacitor discharge through the load and the energy-efficient parameters of the additional circuit are determined. The use of obtained results allows to reduce in practice the duration of the pulse currents and increase the pulse power in the load, that is, to increase the output dynamic characteristics of the EDI. In spark technology, this approach contributes to the production of electro-eroded powders with smaller sizes and better performance. References 12, figures 5, tables 2.

https://doi.org/10.15407/techned2020.04.015
ARTICLE_3_PDF

References

Liu Y., Li X., Li Y., Zhao Zh., Bai F. The lattice distortion of nickel particles generated by spark discharge in hydrocarbon di-electric mediums. Applied Physics A. 2016. Vol. 122. Pp. 174-1 – 174-9. DOI: https://doi.org/10.1007/s00339-016-9698-2.

Shcherba A.A., Suprunovska N.І., Shcherba M.A. Transient analysis in circuits of electric discharge installations with voltage feedback taking into account the recovery time of locking properties their semiconductor switches. Tekhnichna Elektrodynamika. 2018. No 3. Pp. 43–47. DOI: https://doi.org/10.15407/techned2018.03.043.

Casanueva R., Azcondo F.J, Branas C., Bracho S. Analysis, design and experimental results of a high frequency power supply for spark erosion. IEEE Transactions on Power Electronics. 2005. Vol. 20. Pp. 361–369. DOI: https://doi.org/10.1109/TPEL.2004.842992.

Shcherba A.A., Kosenkov V.M., Bychkov V.M. Mathematical closed model of electric and magnetic fields in the discharge chamber of an electrohydraulic installation. Surface Engineering and Applied Electrochemistry. 2015. Vol. 51 (6). Pp. 581-588.

Shcherba A.A., Podoltsev A.D., Kucheriava I.M., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots. Tekhnichna Elektrodynamika. 2013. No 2. Pp. 10-18. (Rus)

Shydlovskaya N.A., Zakharchenko S.N., Cherkasskyi A.P. Non-linear-parametrical Model of Electrical Resistance of Conductive Granulated Media for a Wide Range of Applied Voltage. Tekhnichna Elektrodynamika. 2014. No 6. Pp. 3-17. (Rus)

Shydlovskaya N.A., Zakharchenko S.N., Cherkassky A.P. The Analysis of Electromagnetic Processes in Output Cir-cuit of the Generator of Discharge Pulseshttps:doi.org/10.1063/1.4764017 with Non-linear Model of Plasma-erosive Load at Change Their Parameters in Wide Ranges. Tekhnichna Elektrodynamika. 2016. No 1. Pp. 87-95. (Rus) DOI: https://doi.org/10.15407/techned2016.01.087.

Ivashchenko D.S., Shcherba A.A., Suprunovska N.I. Analyzing Probabilistic Properties of Electrical Characteristics in the Circuits Containing Stochastic Load. IEEE International Conference on Intelligent Energy and Power Systems IEPS-2016. Kyiv, Ukraine, June 7–11, 2016. Pp. 45–48. DOI: https://doi.org/10.1109/IEPS.2016.7521887.

Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark Ero-sion: a High Production Rate Method for Producing Bi0.5Sb1.5Te3 Nanoparticles With Enhanced Thermoelectric Perform-ance. Nanotechnology. 2012. Vol. 23. Pp. 415604-1 – 415604-7.

Nguyen, P.K., Sungho J., Berkowitz A.E. MnBi particles with high energy density made by spark erosion. J. Appl. Phys. 2014. Vol. 115. Iss. 17. Pp. 17A756-1. DOI: https://doi.org/10.1063/1.4868330.

Kornev Ia., Saprykin F., Lobanova G., Ushakov V., Preis S. Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics. 2018. Vol. 96. Pp. 111–118. DOI: https://doi.org/10.1016/j.elstat.2018.10.008.

Shcherba A.A., Suprunovska N.I. Electric Energy Loss at Energy Exchange between Capacitors as Function of Their Initial Voltages and Capacitances Ratio. Tekhnichna Elektrodynamika. 2016. No 3. Pp. 9–11. DOI: https://doi.org/10.15407/techned2016.03.009

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Tekhnichna Elektrodynamika

Abstract views: 466 | PDF Downloads: 48

Downloads

Download data is not yet available.