FLUX OBSERVER ADAPTIVE TO INDUCTION MOTORS ACTIVE ROTOR RESISTANCE VARIATIONS
ARTICLE_9_PDF (Українська)

Keywords

induction motor
adaptive observer
flux
active rotor resistance асинхронний двигун
адаптивний спостерігач
потокозчеплення
активний опір ротора

How to Cite

[1]
Пересада, С., Ніконенко, Є. , Ковбаса, С. and Кузнецов, О. 2022. FLUX OBSERVER ADAPTIVE TO INDUCTION MOTORS ACTIVE ROTOR RESISTANCE VARIATIONS. Tekhnichna Elektrodynamika. 5 (Aug. 2022), 045. DOI:https://doi.org/10.15407/techned2022.05.045.

Abstract

A flux observer for induction motors which is adaptive to the active rotor resistance variations is presented. Due to the added fluxes overestimation in the observer structure, the global exponential stability properties of the current and flux vector components and active rotor resistance estimation are ensured under conditions of persistency of excitation. The proposed observer has a simpler structure compared to existing solutions with the global stability properties. The simulation results of the observer dynamic performance investigation confirm its effectiveness. It is shown that even if the conditions of persistency of excitation are not met, the active rotor resistance is estimated correctly; consequently, the designed observer can be implemented as an identification algorithm in self-commissioning systems of induction electric drives. References 9, figures 5.

https://doi.org/10.15407/techned2022.05.045
ARTICLE_9_PDF (Українська)

References

Zahirniak M.V., Klepikov V.B., Kovbasa S.M., Mikhalskii V.M., Peresada S.M., Sadovoi O.V., Shapoval I.A. Energy efficient electromechanical systems for a wide range of technological purposes. Kyiv: Instytut elektrody-namiky NAN Ukrainy, 2018. 310 p. (Ukr)

Chiasson J. Modeling and high performance control of electric machines. John Wiley & Sons, 2005. 734 p. DOI: https://doi.org/10.1002/0471722359

Gorter R.J.A., Eindhoven T.U. Grey-box identification of induction machines: on-line and off-line approaches. Proefschrift. Technische Universiteit Eindhoven, 1997. 314 p.

Garces L.J. Parameter adaptation for the speed-controlled static AC drive with a squirrel-cage induction mo-tor. IEEE Transactions on Industrial Applications. 1980. Vol. IA-16. No 2. Pp. 173-178. DOI: https://doi.org/10.1109/TIA.1980.4503768.

Kubota H., Matsuse K., Nakano T. New adaptive flux observer of induction motor for wide speed range motor drives. 16th Annual Conference of IEEE Industrial Electronics Society (IECON90). Pacific Grove, CA, USA, No-vember 27-30, 1990. Pp. 921-926. DOI: https://doi.org/10.1109/IECON.1990.149262

Marino R., Peresada S., Tomei P. Exponentially convergent rotor resistance estimation for induction motors. IEEE Transactions on Industrial Electronics. 1995. Vol. 42. No 5. Pp. 508-515. DOI: https://doi.org/10.1109/41.464614

Verrelli C.M., Savoia A., Mengoni M., Marino R., Tomei P., Zarri L. On-line identification of winding re-sistances and load torque in induction machines. IEEE Transactions on Control Systems Technology. 2014. Vol. 22. No. 4. Pp. 1629-1637. DOI: https://doi.org/10.1109/TCST.2013.2285604

Marino R., Tomei P., Verrelli C. M. Induction motor control design. Springer Science & Business Media, 2010. 371 p. DOI: https://doi.org/10.1007/978-1-84996-284-1

Narendra K.S., Annaswamy A.M. Stable adaptive systems. New Jersey. Englewood Cliffs: Prentice Hall, 1989. 480 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 244 | PDF Downloads: 119

Downloads