Abstract
The method for fast calculation of the values of arithmetic autocorrelation functions (ACF) using the transformation in oriented basis is proposed for research of electrical circuits. Recurrent matrix forms calculated by the modeling of typical form of signal allowed simplify the calculation of such functions. The complexity of calculating of arithmetic ACF was compare for different transformations - fast Fourier transformation, Walsh transformation and transformation in oriented basis. References 6, figures 2.
References
Dmitriev E.A., Malakhov V.P. Application of Walsh transform processing system diagnostic information about the rotary machines // Pratsi Odeskoho Politekhnichnoho Universytetu. – 2001. – Issue 1. – Рp. 135–137. (Rus)
Petergerya J. Fust transformation in oriented basis // Tekhnichna Elektrodynamika. Spetsialnyi vypusk “Sylova elektronika ta enerhoefektyvnist”. – 2004. – Part 2. – Pp. 123–126.
Tereshchenko T.O., Laikova L.H., Parkhomenko A.S. Methods for determining an autocorrelation function using walsh transform // Tekhnichna Elektrodynamika. – 2014. – No 5. – Pp. 104–106. (Rus)
Zhuikov V., Petergerya J. Consumption control at local objects using delaying m-filters // Proc. of Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2006 International conference TCSET '2006 (February 28-March 4, 2006, Lviv-Slavsko, Ukraine). – 2006. – Pp. 216–217.
Zhuikov V., Petergeriа I., Khokhlov Y., Khyzhnyak T. Use of discrete transfroms with m-ary argument for remote control and diagnostics of semiconductor converters // Proc. of Compatibility and Power Electronics (CPE), 2009 6th International Conference-Workshop (20-22 May 2009, Badajoz, Spain). – 2009. – Pр. 469–473.
Gibbs J.E., Pichler F.R. Comments on Transformation of ”Fourier” Power Spectra into “Walsh” Power Spectra // IEEE Transaction on Electromagnetic Compatibility. – 1971. – Vol. EMC-13. – No 3. – Pp. 51–55.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Array