Abstract
The efficiency of the structure and the low cost of preparation of production of non-steady electric motors with permanent magnets and massive stator core. The design of the experimental installation for measuring losses in a solid stator core will be laid out. The stages of the method of calculating these losses are formulated. To calculate the losses from eddy currents used the software complex "Comsol multiphysics". The hysteresis losses were calculated by the Steinmetz formula. For different density of the calculated grid, the loss of losses in the massive core was made and a comparison was made with the results of measurements in the rotation speed range 0… 3600 rpm. To calculate the maximum moment in statics, a model of winding with a sinusoidal spatial form of MRS was used. The dependences of the rotational moment on the speed of rotation in the study range was computed. Sufficient accuracy of the calculation methodology is noted. References 12, figures 8, tables 1.
References
Antonov A.Ie. Electric machines of magnetoelectric type. Kiev: Kompas, 2011. 216 p. (Rus)
Petukhov I.S., Kireyev V.G., Akinin K.P., Lavrinenko V.A. Decreasing Torque Ripple of a Slotless Permanent Magnet Torque Motor Using a Double-Layer Winding. Tekhnichna Elektrodynamika. 2024. No 4. Pp. 57–62. DOI: https://doi.org/10.15407/techned2024.04.057.
Kireyev V.G., Akinin K.P. Features of the Development of Slotless Brushless Magnetoelectric Torque Motors. Pr. Ìnstytutu Elektrodynamìky Natsionalnoi Akademii Nauk Ukraïni. 2022. Vyp. 63. Pp. 31–39. DOI: https://doi.org/10.15407/publishing2022.63.031 .
Paulides J.J.H., Meessen K.J., Lomonova E.A. Eddy-Current Losses in Laminated and Solid Steel Stator Back Iron in a Small Rotary Brushless Permanent-Magnet Actuator. IEEE Trans. Magn. 2008. Vol. 44. No 11. Pp. 4373–4376. DOI: https://doi.org/10.1109/TMAG.2008.2001996.
Friedrich L.A.J., Gysen B.L.J., Jansen J.W., Lomonova E.A. Analysis of Motional Eddy Currents in the Slitted Stator Core of an Axial-Flux Permanent-Magnet Machine. IEEE Transactions on Magnetics. 2020. Vol. 56. No 2. Pp. 1–4. DOI: https://doi.org/10.1109/TMAG.2019.2953625.
Сталь 20 ГОСТ 1050-2013,1050-88: характеристики, расшифровка. https://blog. hard-hub.ru/articles/stali/stal-20/ (accessed 2024-12-15).
Sergeev P.S., Vinigradov N.V., Goriainov F.A. Design of Electrical Machines. Moskva: Energiia, 1970. 632 p. (Rus)
COMSOL – Software for Multiphysics Simulations. URL: https://www.comsol.com/?ref=lovejay.top (accessed at 15.12.2024).
Zirka S.E., Moroz Y.I., Chiesa N., Harrison R.G., Høidalen H.Kr. Implementation of Inverse Hysteresis Model Into EMTP. Part I: Static Model. IEEE Transactions on Power Delivery. 2015. Vol. 30. No 5. Pp. 2224–2232. DOI: https://doi.org/10.1109/TPWRD.2015.2416201.
Mitkevich V.F. Physical foundations of electrical engineering. Leningrad: Sotsialist, 1933. 449 p. (Rus)
Metinvest-smc. Carbon steel: classification, marking, application. URL: https://metinvest-smc.com/ua/articles/uglerodistaya-stal-klassifikaciya-markirovka-primenenie/ (accessed at 19.12.2024). (Ukr)
Ivanov-Smolensky A.V. Electrical Machines. Vol. 1. Moskva: Mir, 1982. 416 p. (Rus)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array