ENERGY INDICATORS OF AXIAL INDUCTION DISK-SHAPED MOTOR FOR SHIP RADARS
ARTICLE_5_PDF (Українська)

Keywords

calculation method
axial-flux motor
disk-shaped induction motor
energy indicators
navigation system метод розрахунку
аксіальний двигун
дисковий ротор
енергетичні показники
система навігації

How to Cite

[1]
Kryshchuk, R. et al. 2021. ENERGY INDICATORS OF AXIAL INDUCTION DISK-SHAPED MOTOR FOR SHIP RADARS. Tekhnichna Elektrodynamika. 5 (Aug. 2021), 038. DOI:https://doi.org/10.15407/techned2021.05.038.

Abstract

The development of a reliable gearless electric drive for antennas of ship radars is an important problem. To solve the problem, this article proposes to use an axial induction motor (AIM) with a massive bimetallic disk-shaped rotor. The AIM model is presented, which consists of three computational domains with the boundary condition of symmetry. To calculate the electromagnetic field, a well-known analytical method of integral transformations is used taking into account the variable along the radial coordinate of the linear speed of the rotor. Ready-to-use expressions are presented for the development of a program for the numerical calculation of the magnetic field and energy characteristics of the motor. Algorithm is developed for calculating the dimensions of the AIM, operating at different speeds with a frequency converter. The numerical calculation program is used to calculate the dimensions AIM. It uses well-known recommendations for the parameters of the electromagnetic field in the magnetic core and in the air gap. The calculation of the dimensions of the AIM for ship radars “Mius” is performed. The dependence of the efficiency on the current frequency for different rotor’s frequencies is investigated. The energy indicators of the AIM are investigated at a variable torque on the shaft and at different rotor speeds. The parameters of the power source for the AIM of ship radars are established. References 20, figures 5, tables 3.

https://doi.org/10.15407/techned2021.05.038
ARTICLE_5_PDF (Українська)

References

Volkov I.V., Styazhkin V.P., Mulko P.E., Domanskuy G.V. Gearless electromechanical system with arc-shaped stator for radar. Elektrotekhnichni kompleksy i systemy. 2011. Vyp. 3. Pp. 248–252. (Rus)

Konov B.T., Lubarskuy B.G., Kyravska N.M. Modeling of operation of gearless radar antenna system. Systemy upravlinnia, navihatsii ta zviazku. 2016. No 2. Pp. 44–47. (Ukr)

Koshelev M.V., Kalach Y.N. Gearless electric drive for radar antenna. XIII Youth Scientific and Technical Conference Radar and Communications - Advanced Technologies. Moskva, Russia, December 3, 2015. Pp. 81–84. (Rus)

Eskelinen P.A. Simple high-speed antenna rotator for millimeter-wave clutter measurements. IEEE Antennas and Propagation Magazine. 2005. No 47. Pp. 54–58. DOI: https://doi.org/10.1109/map.2005.1608720

Poloshkov N.E. Two-rotor axial induction motor: author’s abstract of PhD diss.: 05.09.01. FSEI HPE Siberian Federal University. Krasnoyarsk. 2010. 20 p. (Rus)

Mirzaei M., Mirsalim M., Abdollahi S.E. Analytical modeling of axial air gap solid rotor induction machines using a quasi-three-dimensional method. IEEE Transactions on Magnetics. 2007. Vol. 43. No 7. Pp. 3237–3242. DOI: https://doi.org/10.1109/TMAG.2007.894215

Amin Nobahari, Ahmad Darabi, Amir Hassannia. Axial flux induction motor, design and evaluation of steady state modeling using equivalent circuit. IEEE Conference Paper 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC 2017). Mashhad, Iran, February 14-16, 2017. Pp. 352–358. DOI: https://doi.org/10.1109/PEDSTC.2017.7910351

Durgesh Kumar Banchhor, Ashwin Dhabale. Design, Modeling, and Analysis of Dual Rotor Axial Flux Induction Motor. IEEE Conference Paper IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Chennai, India, December 18-21, 2019. DOI: https://doi.org/10.1109/PEDES.2018.8707644

Cencen Hong, Wenxin Huang, Zhenwei Hu. Performance Calculation of a Dual Stator Solid Rotor Axial Flux Induction Motor Using the Multi-Slice and Multi-Layer Method. IEEE Transactions on Magnetics. 2019. Vol. 55. Iss. 2. DOI: https://doi.org/10.1109/TMAG.2018.2872457

Kalo A.K., Dwivedi A., Srivastava R.K., Banchhor D.K. Experiences with Axial-Flux induction motor. IEEE International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). Shillong, India, Juny 12-13, 2015. DOI: https://doi.org/10.1109/epetsg.2015.7510124

Tapia Montero M. A., Hoffer Garces A. E., Tapia Ladino J.A., Wallace Collao R.R. Simulation and Analysis of an Axial Flux Induction Machine. IEEE Latin America Transactions. 2017. Vol. 15(7). Pp. 1263–1269. DOI: https://doi.org/10.1109/TLA.2017.7959345

Tapia M.A., Jara W., Wallace R., Tapia J.A. Parameters Identification of an Axial Flux Induction Machine Using Field Equations. IEEE XIII International Conference on Electrical Machines (ICEM). Alexandroupoli, Greece, September 3-6, 2018. Pp. 351–357. DOI: https://doi.org/10.1109/ICELMACH.2018.8506891

Nobahari A., Darabi A., Hassannia A. Various skewing arrangements and relative position of dual rotor of an axial flux induction motor, modelling and performance evaluation. IET Electric Power Applications. 2018. Vol. 12(4). Pp. 575–580. DOI: https://doi.org/10.1049/iet-epa.2017.0716

Vyshtak T.V., Karlov O.M., Kondratenko I.P., Rashchepkin A.P. Magnetic field of currents winding`s stator of the synchronous motor with hollow rotor. Tekhnichna Elektrodynamika. 2013. No 5. Pp. 41–46. (Rus)

Rashchepkin A., Karlov O., Kryshchuk R. Methodology for calculating according to the averaged magnetic field the energy parameters of the axial arc-stator induction motor with uncompensated winding. Tekhnichna elektrodynamika. 2015. No 4. Pp. 41–47. (Ukr)

Kondratenko I., Kryshchuk R., Rashchepkin A. Electromagnetic processes in the axial arc-stator induction machines with double layer winding. Tekhnichna Elektrodynamika. 2015. No 6. Pp. 34–40. (Ukr)

Kryshchuk R., Karlov O., Bereziuk A. Determination of Conditions for Adequate Analytical Simulation of the Electromagnetic Field of Disk Induction Motors. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, (TCSET 2020). Lviv-Slavske, Ukraine, February 25-29, 2020. Pp. 331–334. DOI: https://doi.org/10.1109/TCSET49122.2020.235450

Kryshchuk R. The magnetic field in the gap of the axial arc-stator induction motor with the parallel connection of windings opposing stators. Tekhnichna Elektrodynamika. 2016. No 4. Pp. 56–58. DOI: https://doi.org/10.15407/techned2016.04.056 (Rus)

Kopylov I.P., Goryainov F.A., Klokov B.K., Morozkin V.P., Tokarev B.F. Design of electrical machines. Moskva: Enerhiia, 1980. 496 p. (Rus)

Voldek A.I. Electric machines. Leninhrad: Enerhiia, 1974. 840 p. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Tekhnichna Elektrodynamika

Abstract views: 532 | PDF Downloads: 154

Downloads

Download data is not yet available.