Abstract
The article proposes an approach to the simulation of parallel operation of external power supply system and AC traction power supply system in unbalanced conditions which based on separated phase representation of three-phase electric networks. Using this approach allows to take into account various configuration of traction substation connection to external power supply system, nonlinear transformer parameters with the use of approximation the magnetic permeability by function from magnetic field strength and nonlinear parameters of traction load by using active and exchange characteristics of AC electric locomotives. Analytic expressions for determining parameters of evaluation system help formulate mathematical model in the normal form of differential equation system. Using this method, various complex mathematical models can be created, because every block are described with the typical equations. Parallel simulation of external and traction power supply system allows to calculate and analyze the power quality indices, perform research focused on power system checking while new equipment or new technical decision provides in steady-state and transient modes. References. 29, figures 6, tables 2.
References
Zharkin A.F., Palachov S.O., Novskyi V.O. Technical regulation of voltage quality in electrical grids with sources of distributed generation. Kyiv: Instytut elektrodymamiky Natsionalnoi Akademii Nauk Ukrainy, 2018. 161 p. (Rus)
Gryb O.G. Quality of electrical energy. Vol. 1, Economic and legal basis of the quality of electrical energy in Ukraine and European Union. Kharkov: PP Graf-Iks, 2014. 300 p. (Rus)
Kuznietsov V. H., Shpolianskyi O. H., Yaremchuk N. A. Integrated power quality index in electric power systems and networks. Tekhnichna Elektrodynamika. 2011. No 3. Pp. 46-52. (Ukr)
Kuznietsov V.H., Shpolianskyi O.H., Yaremchuk N.A. Stabilization of electrical energy parameters in the three-phase systems by semiconductor correction devices. Kyiv: Instytut elektrodymamiky Natsionalnoi Akademii Nauk Ukrainy, 2013. 378 p. (Ukr)
Zharkin A.F., Novskyi V.O., Malakhatka D.O. Complex improvement of power quality and ensure electrical safety in local power supply systems when using hybrid filter compensating converters. Tekhnichna Elektrodynamika. 2018. No 1. Pp. 69-77. (Ukr) DOI: https://doi.org/10.15407/techned2018.01.069
Bollen M.H.J., Gu I.Y.H. Signal processing of power quality disturbances. John Wiley & Sons, 2006. 861 p.
Sychenko V.H., Saienko Yu.L., Bosyi D.O. Power Quality in the Traction Network of the Electrified Railways. Dnipropetrovsk: Standart-Servis, 2015. 340 p. (Ukr)
Zemskyi D.R. Experimental Research of Power Quality at Consumers Getting Electricity from the Line TWR 27,5 kV of Alternating Current Railways. Visnyk Vinnytskoho Politekhnichnoho Instytutu. 2018. No 1 (136). Pp. 66-71. (Ukr)
Kosarev A.B. Fundamentals of electromagnetic compatibility theory in AC traction supply system. Moskva: Intekst, 2004. 272 p. (Rus)
Vasilianskii A.M., Mamoshin R.R., Iakimov G.B. Improvement of AC traction power supply system 27 kV, 50Hz for railways. Zheleznye dorogi mira. 2002. No 8. Pp. 40-46. (Rus)
Laughton M.A. Analysis of unbalanced polyphase networks by the method of phase coordinates. Part 1. System representation in phase frame of reference. Proc. IEEE. 1968. Vol. 115. No 8. Pp. 1163-1172. DOI: http://dx.doi.org/10.1049/piee.1968.0206
Berman A., Wilsun Xu. Analysis of faulted power systems by phase coordinates. IEEE Transactions on Power Delivery. 1998. Vol. 13. Issue 2. Pp. 587-595.
Losev S.B., Chernin A.B. Calculation of electrical quantities in asymmetric modes of electrical systems. Moskva: Energoatomizdat, 1983. 528 p. (Rus)
Berman A.P. Calculation of electrical systems using phase coordinates in asymmetric modes. Elektrichestvo. 1985. No 12. Pp. 6-12. (Rus)
Bernas S., Tsek Z. Mathematical models of electric power systems elements. Moskva: Energoizdat, 1982. 312 p. (Rus)
Zakariukin V.P., Kriukov A.V., Avdienko I. M. Simulation of traction power supply systems equipped with balancing transformers. Moskva, Berlin: Direkt-Media, 2017. 166 p. (Rus)
Kyrelenko O.V., Seheda M.S., Butkevych O.F., Mazur T.A. Mathematical models in electric power systems. Lviv: Lvivska politekhnika, 2010. 608 p. (Ukr)
Veprik Iu.N. Representation of power transformers in mathematical models of electric systems in stationary asymmetrical modes of operation. Vestnik natsionalnoho tekhnicheskogo universiteta «KhPI». 2012. No 28. Pp. 3-11. (Rus)
Aleksandrov G.N., Shakirov M.A. Transformers and reactors. New ideas and principles. St.-Petersburg: Polytekhnicheskii Universitet, 2006. 204 p. (Rus)
Zirka S.E., Moroz Iu.I., Moroz E.Iu. Model of isotropic electrical steel during magnetization transients. Tekhnіchna elektrodinamіka. 2012. No 4. Pp. 8-12 (Rus)
Zeveke G.V. Fundamentals of electrical circuit theory. Moskva: Energiia, 1975. 752 p. (Rus)
Pentehov Y.V., Krasnozhon A.V. Universal approximation of magnetization curves of electrotechnical steels. Elektrotekhnika i elektromekhanika. 2006. No 1. Pp. 66-70. (Rus)
DSTU EN 50160:2014. Voltage characteristics of electricity supplied by public electricity networks (EN 50160:2010, IDT). Kyiv: DP “UkrNDNTs”, 2014. 32 p. (Ukr)
GOST 13109-97. Electric energy. Compatibility of technical means. Standards of quality of electric energy in power supply systems of general purpose, Kiev: Gosstandart Ukrainy, 1999. 32 p. (Rus)
Molotilov B.V. Cold Rolled Electrical Steel. Moskva: Metallurgiia, 1989. 168 p. (Rus)
Ershevych V.V. Handbook above design of electrical power systems. Moskva: Enerhoatomizdat, 1985. 352 p. (Rus)
Sapozhnikov A.V. Design of transformers. Moskva: Gosenergoizdat, 1959. 361 p. (Rus)
Zemskyi D.R., Bosyi D.O. Energy Efficient Modes of Distribution Power Supply Systems with Different Vector Group of Transformer. IEEE 6th International Conference on Energy Smart Systems. Ukraine, Kyiv, April, 17-19. 2019. Pp. 64-69. DOI: https://doi.org/10.1109/ESS.2019.8764246.
Bolshev L.N., Smirnov N.V. Tables of mathematical statistics. Moskva: Nauka, 1983. 416 p. (Rus)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Tekhnichna Elektrodynamika

