APPROXIMATION ENVELOPES OF QUASI-SINUSOIDAL DIGITAL-ANALOG SIGNALS
ARTICLE_10_PDF (Українська)

Keywords

генератор синусоїдальних сигналів
цифро-аналоговий перетворювач
обвідна синусоїдального сигналу
лінійна апроксимація digital-to-analog converter
, envelope of sinusoidal signal
linear approximation
first order basis spline

How to Cite

[1]
Карасінський, О., Тесик, Ю. and Мороз, Р. 2022. APPROXIMATION ENVELOPES OF QUASI-SINUSOIDAL DIGITAL-ANALOG SIGNALS. Tekhnichna Elektrodynamika. 3 (May 2022), 079. DOI:https://doi.org/10.15407/techned2022.03.079.

Abstract

The principle of setting the instantaneous values of signals with smoothed envelopes using first-order basis splines, which is optimal from the point of view of equipment costs and the computing power of a microprocessor is proposed. A computer model of a multiphase generator has been developed with the help of which the principles of stepwise and linear approximation of the signal envelope have been investigated. References 11, figures 5, table 1.

 

https://doi.org/10.15407/techned2022.03.079
ARTICLE_10_PDF (Українська)

References

EN 61000-4-30:2009. Electromagnetic compatibility (EMC). Part 4-30. Test and measurement methods. Measurement of electricity quality indicators. URL: http://www.loe.ant.lviv.ua/home/dokumenti/gost-dstu?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1 (accessed 02.09.2021) (Ukr)

All about synthesizers DDS. URL: https://kit-e.ru/powersource/vsyo-o-sintezatorah-dds/ (accessed 12.09.2021) (Rus)

Dedyukhin A.A. Signal research using spectral analysis of digital oscilloscopes. Equivalent sampling of digital oscilloscopes LeCroy. URL: https://prist.ru/library/stati/issledovanie_signalov_s_primeneniem_spektralnogo_analiza_cifrovyh_oscillografov_ekvivalentnaya_diskr/ (accessed 02.10.2021) (Rus)

Akagi H. New trends in active filters for improving power quality. Proceedings of International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth. 1996. Vol. 1. Pp. 417–425. DOI: https://doi.org/10.1109/PEDES.1996.539652

Mikhotin V.D., Chuvykin B.V. Using splines for restore discretized signals. Izmereniia, kontrol, avtomatizatsiia. 1982. No 3 (43). Pp.17–24. (Rus)

Taranov S. G., Borshcheva N. O., Vasiliev E. P., Karasinsky O. L., Tulchinsky D. Yu. Application of spline interpolators in recorders with time scale transformation. Elektronnoe modelirovanie. 1988. No 3. Pp.72–77. (Rus)

Lagrange polynomial. URL: https://en.wikipedia.org/wiki/Lagrange_polynomial (accessed 09.12.2021)

Newton polynomial. URL: https://en.wikipedia.org/wiki/Newton_polynomial (accessed 09.12.2021)

Karasinsky O.L., Tesik Iu.F. Multiphase generator for simulating the parameters of a three-phase network. Pratsi Instytutu Electrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Elektrotehnika. 2001. No 7. Pp. 98–104. (Rus)

Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Spline-function methods. Moskva: Nauka, 1980. 350 p. (Rus)

Korneichuk N.P. Splines in approximation theory. Moskva: Nauka, 1984. 352 p. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 115 | PDF Downloads: 70

Downloads

Download data is not yet available.