MECHANICAL CHARACTERISTICS OF THE TURBOGENERATOR STATOR OUTHANG AT VARIOUS OPTIONS OF FIXING AT A CORE END ZONE
ARTICLE_6_PDF (Українська)

Keywords

turbogenerator
end area
stator winding
finite element method
mechanical movings and stresses турбогенератор
торцева зона
обмотка статора
метод скінченних елементів
механічні переміщення та на- пруження

How to Cite

[1]
Кучинський, К., Крамарський, В., Тітко, В. and Гуторова, М. 2019. MECHANICAL CHARACTERISTICS OF THE TURBOGENERATOR STATOR OUTHANG AT VARIOUS OPTIONS OF FIXING AT A CORE END ZONE. Tekhnichna Elektrodynamika. 2019, 2 (Feb. 2019), 034. DOI:https://doi.org/10.15407/techned2019.02.034.

Abstract

The mechanical characteristics in a copper and isolation of the turbogenerator 300 MW stator winding under a nominal loading has been searched by a numeral method at the different variants of fixing in the core end zone. Distribution of a radial and axial movements and a mechanical tension in isolation on a length of an outhang bar under action of an elektrodynamic forces is received. Changes of the indicated above characteristics when weakened a fixing of an outhang bars in a stator end zone are estimated. The new advanced design of a fixing it at an exit from a core for minimization a moving of a turbogenerator stator outhan is offered. References 10, figures 3.

https://doi.org/10.15407/techned2019.02.034
ARTICLE_6_PDF (Українська)

References

Golodnova O.S., Rostik G.V. The analysis and actions for the prevention of damages of cores of stators turbogenerators. Elektrosila. 2004. No 43. Pp. 56–64. (Rus)

Shumilov Yu.N., Shtogrin A.V. Reduction of damageability of stators of the powerful turbogenerators caused by vibration in a face zone. Electrical engineering & Electromechanics. 2014. No 1. Pp. 37–39. (Rus)

Kuznetsov D.V., Maslov V.V., Pikulsky V.A., Polyakov V.I., Polyakov F.A., Khudyakov A.N., Shandybin M.I. Defects of turbogenerators and methods of their diagnostics at an initial stage of manifestation. Elektricheskie stantsii. 2004. No 8. Pp. 51–57. (Rus)

Zozulin Yu.V., Antonov O.Ye., Bychik V.M., Borychevskyi A.M., Kobsar K.O., Livshyts O.L., Rakohon V.H., Rohovyi I.Kh.,

Khaimovych L.L., Cherednyk V.I. Creation of new types and modernisation of acting turbogenerators for thermal power plants. Kharkiv: PF Kolegium, 2011. 228 p. (Ukr)

Kuchynskyi K., Titko V., Hutorova M., Mystetskyi V., Khudyakov A., Prus V. Mathematical model and research results of

vibromechanical processes in the elements of the powerful synchronous generator end area. Proc. International Сonference on Modern Electrical and Energy Systems MEES’17. Kremenchuk, Ukraine, November 15-17, 2017. Pp. 308–311.

Glebov I.A., Danilevich Ya.B. Scientific principles of design of turbogenerators. Leningrad: Nauka, 1986. 184 p. (Rus)

Avruch V.Yu., Pikulskii V.A., Chistikov A.A. Study the possibilities for reducing thermomechanical loads stators turbogenerators. Elektricheskie stantsii. 1986. No 4. Pp. 42–44. (Rus)

Tytko A.I., Shchastlivyi G.G. Mathematical and physical modelling of electromagnetic fields in electric machines of alternating current. Kyiv: Naukova dumka, 1976. 200 р. (Rus)

Kuchynskyi K.A. Effect on circulation disorders distillate on thermomechanical stresses in isolation of the stator winding of the turbogenerator by power 800 MW. Tekhnichna Elektrodynamika 2014. No 1. Pp. 75-80. (Rus)

Kramarsky V.A., Cheremisov I.Ya., Gruboy O.P., Tytko O.I., Penskiy V.F., Minko O.M. Electric machine stator. Patent UA No 99571, 2015. (Ukr)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 92 | PDF Downloads: 19

Downloads