IMPROVING PRINCIPLES OF ELECTRIC ENERGY PULSE TRANSFORMATION INTO HIGH-FREQUENCY MECHANICAL ENERGY USING CAPACITIVE METHOD
ARTICLE_3_PDF

Keywords

mathematical modeling
ultrasonic sensor model
capacitive transducers
electric field
charge density
electrode
impulses
measurements
diagnostics математичне моделювання
модель ультразвукового сенсора
ємнісний перетворювач
електричне поле
щільність зарядів
електрод
імпульси
вимірювання
інтелектуальна діагностика

How to Cite

[1]
Petrishchev, .O. et al. 2019. IMPROVING PRINCIPLES OF ELECTRIC ENERGY PULSE TRANSFORMATION INTO HIGH-FREQUENCY MECHANICAL ENERGY USING CAPACITIVE METHOD. Tekhnichna Elektrodynamika. 6 (Oct. 2019), 018. DOI:https://doi.org/10.15407/techned2019.06.018.

Abstract

Closed solutions of electrostatic and electrodynamics problems are formed in metals for a piecewise-homogeneous medium, where half-space is filled with metal of finite values having electrical conductivity and magnetic permeability being implemented within the framework of a mathematical model for capacitive type sensor when converting electrical energy into high-frequency mechanical (ultrasonic). It is shown that a disk transducer of a capacitive type excites forces acting normally on the surface of an electrically conductive product. A quantitative assessment of Coulomb forces for the surface density is carried out. The main factors determining a disk converter sensitivity of capacitive type are stated. Capacitive transducers should be used for measuring, control and diagnostic equipment. References 10, figures 3.

https://doi.org/10.15407/techned2019.06.018
ARTICLE_3_PDF

References

Ermolov I.N., Lange Yu.V. Nondestructive testing: handbook. Vol. 3: Ultrasonic testing. Moskva: Mashi-nostroenie, 2004. 864 p. (Rus)

Palmer S.B. S. Dixon. Industrially viable non-contact ultrasound. Insight. 2003. Vol. 45. No 3. Pp. 211–217.

Migushchenko R.P., Suchkov G.M., Radev H.K., Petrishchev O.N., Desyatnichenko A.V. Electromagnetic-acoustic transducer for ultrasonic thickness gauging of ferromagnetic metal products without removing the dielectric coating. Tekhnichna Elektrodynamika. 2016. No 2. Pp.78-82. (Rus)

Suchkov G.M., Alekseev E.A., Zaharenko V.V. Energy and resource-saving devices and technologies of non-destructive testing. Tekhnicheskaia diagnostika i nerazrushaiushchii kontrol. 2006. No 4. Pp. 29–34. (Rus)

Zaytseva L.V. Film heterosystems of capacitors based on polyamide, indium oxides, tin and aluminum. PhD thesis: 01.04.07, Institute of electric physics and radiation technologies NAN of Ukraine. Kharkiv. 2015. 190 p. (Ukr)

Wright W.M.D., Hutchins D.A. Air-coupled testing of metals using broadband pulses in through-transmission. Ultrasonics 37. 1999. No 37. Pp. 19-22.

Suchkov G.M., Petrishchev O.N., Nozdracheva E.L., Romanyuk M.I. Excitation of ultrasonic waves in met-als by a capacitive transducer. Part 1. Tekhnicheskaia diagnostika i nerazrushaiushchii kontrol. 2015. No 1. Pp. 45-50. (Rus)

Tamm I.E. Foundations of electricity theory. Moskva: Nauka, 1976. 616 p. (Rus)

Koshlyakov N.S., Gliner E.B., Smirnov M.M. Mathematical physics equations in partial derivatives. Mos-kva: Vysshaia shkola, 1970. 710 p. (Rus)

Feynman R., Leyton R., Sends M. Feynman’s lectures on physics. Vol. 5. Elektrichestvo i magnetizm. Moskva: Mir, 1966. 296 p. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 201 | PDF Downloads: 27

Downloads

Download data is not yet available.