A THIN ELECTROMAGNETIC SHIELD OF A COMPOSITE STRUCTURE MADE ON THE BASIS OF A MAGNETIC FLUID
ARTICLE_3_PDF (Українська)

Keywords

electromagnetic screen
composite material
magnetic fluid
screening coefficient
effective magnetic permeability електромагнітний екран
композиційний матеріал
магнітна рідина
коефіцієнт екранування
ефективна магнітна проникність

How to Cite

[1]
Глива, В., Подольцев, О., Болібрух, Б. and Радіонов, О. 2022. A THIN ELECTROMAGNETIC SHIELD OF A COMPOSITE STRUCTURE MADE ON THE BASIS OF A MAGNETIC FLUID. Tekhnichna Elektrodynamika. 2018, 4 (Dec. 2022), 014. DOI:https://doi.org/10.15407/techned2018.04.014.

Abstract

A thin electromagnetic shield (0.25 − 0.50 mm thick) were developed, which has a composite structure and was made on a magnetic fluid deposited on a dielectric substrate. Experimental researches of its shielding and electromagnetic properties were carried out. It is shown that the screening coefficient of a low-frequency magnetic field for such a screen is 2.4 − 7.8. The screening coefficient for an ultrahigh-frequency magnetic field is 3.0 − 9.3. The values of these coefficients depend on the thickness of the screen. The calculation-experimental method is proposed for the determine of the effective magnetic permeability of the composite screen material. This method is using the well-known analytical solution of the magnetostatic problem for a thin spherical shell and the results of measuring screening coefficients for a screen of spherical (or nearly spherical) shape. The obtained relative values of the magnetic permeability of the material for the case of a low-frequency magnetic field are 420 − 1050. These values depend little on the thickness of the screen. References 10, table 2, figures 2.

https://doi.org/10.15407/techned2018.04.014
ARTICLE_3_PDF (Українська)

References

Levchenko O.G. Levchuk V.K., Timoshenko O.N. Shielding materials and means of individual protection of the welder from magnetic fields. Avtomaticheskaia svarka. 2011. No 3. Pp. 49–55. (Rus)

Patil N., Velhal N. Pawar R. Puri V. Electric, magnetic and high frequence properties of screen printed ferrite-ferroelectric composite thick films on alumina substrate. Microelectronics International. 2015. Iss. 32(1). Pp. 25–31.

Kasar V., Pawar A. Novel Approach to Electromagnetic Interference Shielding for Cell Phones. International Journal of Science and Research. 2014. Iss. 3. Pp. 1869–1872.

Singh J. Computer Generated Energy Effects on Users and Shielding Interference. International Journal of Innovative Research in Computer and Communication Engineering. 2015. Iss.3. Pp. 10022–10027.

Fionov A.S., Yurkov G.Y., Popko O.V., Kosobudskii I.D., Taratanov N.A., Potemkina O.V. Polymer nanocomposites: synthesis and physical properties. Advances in Composite Materials or Medicine and Nanotechnology. Rijeka, Croatia: IN-TECH Education and Publishing, 2011. Pp. 343–364.

Taranov N.V., Yurkov G.Yu., Kosobudsky I.D. Synthesis of rhenium-containing nanoparticles on the surface of polytetrafluoroethylene microgranules. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. No 44. Pp. 95-101. (Rus)

Bogush V.A., Borbotko T.V., Nasonov N.V. Electromagnetic radiation screens based on magnetic materials. Technologies. Constructions. Application. Minsk: Bestprint. 2016. 222 p. (Rus)

Glyva V., Lapshin O., Kovalenko V., Khudik M. Investigation of protective properties of electromagnetic screens based on finely divided iron and its compounds. Visti Donetskoho girnychoho instytutu. 2017. No 1(40). Pp. 123 – 127. (Ukr)

Podoltsev A. Kucheryava I. Multiscale modeling in electrical engineering. Kiev: Institute of elektrodynamics NAS of Ukraine. 2011. 256 p. (Ukr)

Jackson J. Classical Electrodynamics. Moskva. Mir, 1965. 702 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 138 | PDF Downloads: 17

Downloads