MULTIPHYSICS MODELING OF ELECTROTECHNICAL DEVICES
ARTICLE_1_PDF (Українська)

Keywords

multiphysics modeling
multi-field problems
multiphysics circuits
field-circuit problems
strong and weak coupled processes мультифизическое моделирование
мультиполевые задачи
мультифизические цепи
цепно-полевые задачи
сильно- и слабосвязанные процессы

How to Cite

[1]
Подольцев, А. and Кучерявая, И. 2015. MULTIPHYSICS MODELING OF ELECTROTECHNICAL DEVICES. Tekhnichna Elektrodynamika. 2 (Mar. 2015), 003.

Abstract

In the article the general characterization of electrical devices with simultaneously running processes of different physical nature, that is multiphysics modeling, is presented. The classification of multiphysics (coupled) problems in electrical engineering both according to character of coupling between these physical processes (weakly coupled and strongly coupled processes) and by approaches to their modeling (multi-field problems, multi-circuit problems and field-circuit problems) is carried out. In compliance with such classification the review of scientific publications is implemented and the examples of three types of solved multiphysics problems are given. The distinctions of the coupled problems and approaches to their solving are given. As examples, the interconnections between electromagnetic, thermal processes and thermomechanical stress at induction heating of moving ingots, the coupling of external circuit with electric and magnetic circuits of three-phase power transformer and the scheme of solving the electromagnetic and thermal field problems for underground power cable line simultaneously with electric circuit equation taking into account the type of screen grounding are presented. References 42, figures 7, tables 2.

ARTICLE_1_PDF (Українська)

References

Vaskovskii Yu.N. Perspectives for modeling of electromechanical converts under dynamic conditions on the basis of field-circuit methods // Elektrotekhnika i Elektromekhanika. – 2003. – № 1. – Pp. 23–25. (Rus)

Glukhenkyi A.I., Gorislavets Yu.M. Scalar electric and vector magnetic potentials in the theory of electromagnetic field // Tekhnichna Elektrodynamika. – 2012. – № 2. – Pp. 7–8. (Rus)

Glukhenkyi A.I., Gorislavets Yu.M., Maksimenko V.Yu. Electromagnetic stirrer of liquid metal with alternated action of traveling and pulsating magnetic fields // Tekhnichna Elektrodynamika. – 2014. – № 4. – Pp. 123–125. (Rus)

Demirchian K.S., Neiman L.R., Korovkin N.V., Chechurin B.L. Theoretical foundations of electrical engineering. Vol. 1. – Sankt-Peterburg: Piter, 2004. – 462 p. (Rus)

Korovkin N.V., Shishigin S.L. Computational methods in the theory of grounding // Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. – 2013. – № 1. – С. 74–79. – available at: http://ntv.spbstu.ru/fulltext/N1.166.2013_11.PDF. (accessed 5 August 2014). (Rus)

Kucheriavaia I.N. Application of multiscale modeling for study of electric field in insulation of 330 kV power cable at emergency operation // Tekhnichna Elektrodynamika. – 2012. – № 4. – Pp. 13–18. (Rus)

Lebedev V.D., Yablokov A.A. Study of dynamic processes in instrument current and voltage transformers // Vestnik IGEU. – 2013. – Is. 6. – Pp. 1–7. – http://vestnik.ispu.ru/sites/vestnik.ispu.ru/files/ publications/str.98-104.pdf. (Rus)

Mathematical modeling and realization of full-scale experiment / Pod red. V.N.Timofeeva, E.A.Golovenko, E.V.Kuznetsova. – Krasnoiarsk: Sibirskii federalnyj universitet, 2007. – 210 p. (Rus)

Podoltsev A.D., Kucheriavaia I.N. Numerical calculation of electromagnetic and thermal processes in underground power cable line. Steady-state conditions. // Tekhnichna Elektrodynamika. Temat. vypusk "Sylova elektronika ta enerhoefektyvnist". – 2006. – Vol. 1. – Pp. 91–95. (Rus)

Rymsha V.V., Radimov I.N., Gulyi M.V., Kravchenko P.A. Improved field-circuit model of rectifierreluctance motor // Elektrotekhnika i Elektromekhanika. – 2010. – № 5. – Pp. 22–26. (Rus)

Segerlind L. Application of finite-element method. – Moskva: Mir, 1979. – 312 p. (Rus)

Shcherba A.A., Podoltsev A.D., Kucheriavaia I.N. Electromagnetic processes in 330 kV cable line with polyethylene insulation // Tekhnichna elektrodynamika. – 2013. – № 1. – Pp. 9–15. (Rus)

Shcherba A.A., Podoltsev A.D., Kucheriavaia I.N., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots // Tekhnichna Elektrodynamika. – 2013. – № 2. – Pp. 10–18. (Rus)

Ansys Multiphysics – available at: http:// www.ansys.com (accessed 5 August 2014).

Bhide R.S., Kumbhar G.B., Kulkarni S.V., Koria J.P. Coupled circuit-field formulation for analysis of parallel operation of converters with interphase transformer // Electric Power Systems Research. – 2008. – Vol. 78. – Is. 1. – Pp. 158–164.

Chan T.F., Lai L.L., Yan L.T. A coupled circuit and field analysis of a three-phase induction motor with the Smith connection // IEEE Trans. on Magnetics. – 2006. – Vol. 42. – No. 4. – Pp. 1315–1318.

Сomsol Multiphysics – available at: http://www.comsol.com (accessed 5 August 2014).

Costa M.C., Nabeta S.I., Cardoso J.R. Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor // IEEE Trans. on Magnetics. – 2000. – Vol. 36. – No. 4. – Pp. 1431–1434.

Dular P. Dual magnetodynamic finite element formulations with natural definitions of global quantities for electric circuit coupling // Scientific Computing in Electrical Engineering. – 2001. – Vol. 18. – Pp. 367–377.

Eustache P., Meunier G., Coulomb J.L. Finite element toolbox for generic coupling (magnetic, thermal, etc.) // IEEE Trans. on Magnetics. – 1996. – Vol. 32. – Is. 3. – Pp. 1461–1464.

Gersem H., Hameyer K., Weiland T. Field-circuit coupled models in electromagnetic simulation // Journal of Computational and Applied Mathematics. – 2004. – Vol. 168. – Is. 1–2. – Pp. 125–133.

Gersem H., Mertens R., Lahaye D., Vandewalle S., Hameyer K. Solution strategies for transient, fieldcircuit coupled systems // IEEE Trans. on Magnetics. – 2000. – Vol. 36. – No. 4. – Pp. 1531–1534.

Golosnoy I.O., Sykulski J.K. Numerical modeling of non-linear coupled thermo-electric problems. A comparative study // The Internat. Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL). – 2009. – Vol. 28. – No. 3. – Pp. 639–655.

Hameyer K., Driesen J. , De Gersem H., Belmans R. The classification of coupled field problems // IEEE Trans. on Magnetics. – 1999. – Vol. 35. – No. 3. – Pp. 1618–1621.

Kanerva S. Simulation of electrical machines circuits and control systems using finite element method and system simulator // Doctoral Dissertation. – Helsinki University of Technology. Department of Electrical and Communications Engineering. – Helsinki, 2005. – 92 p. – available at: http://lib.tkk.fi/Diss/2005/isbn9512276100/isbn9512276100.pdf (accessed 5 August 2014).

Kulkarni S.V., Khaparde S.A. Transformer Engineering: Design, Technology, and Diagnostics. – CRC

Press, Taylor & Francis group, 2012. – 750 p.

Kumbhar G.B., Kulkarni S.V., Escarela-Perez R., Campero-Littlewood E. Applications of coupled field formulations to electrical machinery // The Internat. Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL). – 2007. – Vol. 26. – Is. 2. – Pp. 489–523.

Kumbhar G.B., Kulkarni S.V., Jochi V.S. Analysis of short circuit performance of split-winding transformer using coupled field-circuit approach // IEEE Trans. on Power Delivery. – 2007. – Vol. 22. – No. 2. – Pp. 936–943.

Manot G., Lefevre Y., Piquet H., Richardeau F. Integration of control loops in coupled field circuit model to study magnetic devices supplied by power electronic converter and their control // The Internat. Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) – 2002. – Vol. 21. – No. 4. – Pp. 563–572.

Matlab. The Language of Technical Computing – available at: http://www.mathworks.com/ products/ matlab/ (accessed 5 August 2014).

Michopoulos J.G., Farhat С., Fish J. Survey on modeling and simulation of multiphysics systems. – 2005. – available at: http://www.columbia.edu/cu/civileng/fish/Publications_files/ MultiphysicsSurvey.pdf (accessed 5 August 2014).

Ortiz J.L.R., Sadowski N., Kuo-Peng P., Batistela N.J., Bastos J.P.A. Coupling static converter with control loop and nonlinear electromagnetic devices // IEEE Trans. on Magnetics. – 2001. – Vol. 37. – No. 5. – Pp. 3514–3517.

Simulink. Simulation and Model-Based Design. – available at: http://www.mathworks.com/ products/

simulink/ (accessed 5 August 2014).

Sykulski J.K. Computational magnetics. – Chapman & Hall Publisher, 1995. – 373 p.

Tanaka T., Takahashi N. Direct finite element analysis of flux and current distributions under specified conditions // IEEE Trans. on Magnetics. – 1990. – Vol. 26. – No. 2. – Pp. 968–970.

Tsukerman I.A., Konrad A., Meunier G., Sabonnadiere J.C. Coupled field-circuit problems: trends and accomplishments // IEEE Trans. on Magnetics. – 1993. – Vol. 29. – No. 2. – Pp. 1701–1704.

Turowski J. Coupled fields. − Springer, 1995. – Pp. 234–284.

Turowski J. Fast computation of coupled fields in complex, 3-D, industrial electromagnetic structures // The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL). – 1997. – Vol. 17. – No.4. – Pp. 489–505.

Vaananen J. Circuit theoretical approach to couple two-dimensional finite element model with external circuit equations // IEEE Trans. on Magnetics. – 1996. – Vol. 32. – No. 2. – Pp. 400–410.

Yatchev I. Coupled filed problems in electrical apparatus // Facta Universitatis. – 2003. – Vol. 3, No. 15. – Pp. 1089–1101. – available at: http://facta.junis.ni.ac.rs/macar/macar200303/ macar200303-15.pdf (accessed 5 August 2014).

Zhang Y., Zhang N., Kang Y., Yan X., Xie D. Magnetic field of a complex construction transformer using direct field-circuit coupling method // Advanced Materials Research. – 2013. – Vols. 614–615. – Pp. 1230–1233.

Zhou P., Fu W.N., Lin D., Stanton S., Cendes Z.J. Numerical modeling of magnetic devices // IEEE Trans. on Magnetics. – 2004. – Vol. 40. – No. 4. – Pp. 1803–1809.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 78 | PDF Downloads: 8

Downloads