Ключові слова

Institute of Electrodynamics of the National Academy of Sciences of Ukraine Інститут електродинаміки НАН України

Як цитувати

Кириленко, О. 2022. ДО 75-РІЧЧЯ ІНСТИТУТУ ЕЛЕКТРОДИНАМІКИ НАН УКРАЇНИ. ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА. 3 (Трав 2022), 003. DOI:https://doi.org/10.15407/techned2022.03.003.


Стисло розглянуто історію та здобутки Інституту електродинаміки НАН України за 75 років його існування, пов’язані зі становленням і розвитком наукових досягнень в галузях енергетики, електротехніки та енергетичного машинобудування України. Бібл. 65.



Shidlovsky A.K. Flipping through the pages of history. Tekhnichna elektrodynamika. 2007. No 3. Pp. 3–10. (Ukr)

Kolesnikova N.F., Kozlova O.I., Litvinova O.A. Software for calculation and selection of settings of parameters of operation of the phase selector module with load sector. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2019. Vyp. 54. Pp. 29–36. (Ukr) DOI: https://doi.org/10.15407/publishing2019.54.029

Chernenko P.O., Martyniuk O.V., Miroshnyk V.O. Multifactor modeling and analysis of electrical load of the power system according to long-term prehistory. Tekhnichna elektrodynamika. 2018. No 1. Pp. 87–93. DOI: https://doi.org/10.15407/techned2018.01.087 (Ukr)

Kyrylenko O., Zharkin A., Butkevych O., Blinov I., Zaitsev Ie. Power systems research and operation. Selected problems, Springer, 2021. 174 р. DOI: https://doi.org/10.1007/978-3-030-82926-1

Butkevych O.F., Parus Y.V.Operational analysis of the postemergency state of distribution electric networks by means of an intelligent system. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2018. Vyp. 51. Pp. 5–12. DOI: https://doi.org/10.15407/publishing2018.51.005 (Ukr)

Stogniy B.S., Sopel M.F. Fundamentals of monitoring in the power industry. On the concept of monitoring. Tekhnichna elektrodynamika. 2013. No 1. Pp. 62–69. (Ukr)

Stognii B., Pankiv V., Tankevych E. Iterative calculation of electromagnetic processes in the current transformer by the approximated magnetization curve. IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014. Pp. 149–152. DOI: https://doi.org/10.1109/IEPS.2014.6874168

Stogniy B.S., Sopel M.F., Varsky G.M., Yakovleva I.V. Systems of synchronized measurements in electric power industry. Improving accuracy and metrological support. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2013. Vyp. 35. Pp. 37–47. (Ukr)

Butkevich O.F., Pilipenko Y.V., Chizhevsky V.V., Elizarov I.O. Vector measurements of mode parameters and identification of electromechanical vibration modes in the unified power system of Ukraine. Tekhnichna elektrodynamika. 2017. No 6. Pp. 43–54. DOI: https://doi.org/10.15407/techned2017.06.043 (Ukr)

Butkevich OF, Kirilenko OV, Lenga OV, Lukyanenko LM, Pavlovsky VV, Stelyuk AO, Chizhevsky VV Ensuring the sustainability of power systems and their associations. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2018. 320 p. (Ukr)

Kuznetsov VG, Melnichuk V.A., Tugay I.Y. Ferroresonance phenomena in electrical networks with solar and wind power plants. IV International scientific and technical conf. Energy Efficiency and Energy Security of Electric Power Systems (EEES-2020), Kharkiv, November 10–13, 2020. Pp. 101–102. (Ukr)

Tugai Yu.I., Kuchansky V.V., Tugai I.Yu. Application of controlled devices for compensation of charging power of lep nvn in electric networks. Tekhnichna elektrodynamika. 2021. No 1. Pp. 53–56. DOI: https://doi.org/10.15407/techned2021.01.053 (Ukr)

Shpolyansky O.G. Safe disconnection of SF6 switches in overhead power lines. Tekhnichna elektrodynamika. 2021. No 6. Pp. 51–57. DOI: https://doi.org/10.15407/techned2021.06.051 (Ukr)

Kirilenko O.V., Basok B.I., Bazeev E.T., Blinov I.V. Energy of Ukraine and the realities of global warming. Tekhnichna elektrodynamika. 2020. No 3. Pp. 52–61. DOI: https://doi.org/10.15407/techned2020.03.0512 (Ukr)

Basok BI, Butkevich OF, Dubovsky SV Technical and economic aspects of assessing the prospects for decarbonization of the unified energy system of Ukraine. Tekhnichna elektrodynamika. 2021. No 5. Pp. 55–62. DOI: https://doi.org/10.15407/techned2021.05.055 (Ukr)

Pavlovsky V., Steliuk A., Lenga O., Hrechko V. Frequency stability of the bulk isolated power system with high share of renewables and nuclear generation. Chapter in the book “Power systems research and operation. Selected problems”, Springer, 2021. 180 p. URL: https://link.springer.com/chapter/10.1007/978-3-030-82926-1_8. (accessed at 05.05.2022)

Blinov I., Kyrylenko O., Parus E., Rybina O. Decentralized Market Coupling with Taking Account Power Systems Transmission Network Constraints. Power Systems Research and Operation. Studies in Systems, Decision and Control. 2022. Vol. 388. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-82926-1_1

Ivanov G.A., Blinov I.V., Parus E.V., Miroshnik V.O. Component models for the analysis of the impact of renewable energy sources on the market value of electricity. Tekhnichna elektrodynamika. 2020. No 5. Pp. 72–75. DOI: https://doi.org/10.15407/techned2020.05.072 (Ukr)

Butkevich O.F., Yuneeva N.T., Gureeva T.M., Stetsyuk P.I. The problem of the location of electricity storage in the UES of Ukraine, taking into account its impact on power flows in controlled sections. Tekhnichna elektrodynamika. 2020. No 4. Pp. 46–50. DOI: https://doi.org/10.15407/techned2020.04.046 (Ukr)

Kirilenko O.V., Blinov I.V., Parus E.V., Trach I.V. Estimation of efficiency of use of systems of accumulation of the electric power in electric networks. Tekhnichna elektrodynamika. 2021. No 4. Pp. 44–54. DOI: https://doi.org/10.15407/techned2021.04.044 (Ukr)

Blinov I., Trach I., Parus Y., Khomenko V., Kuchanskyy V., Shkarupylo V. Evaluation of The Efficiency of The Use of Electricity Storage Systems in The Balancing Group and The Small Distribution System. IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek). 2021. Pp. 262–265. DOI: https://doi.org/10.1109/KhPIWeek53812.2021.9569981

Blinov I., Parus E. Approach of Reactive Power Pricing for Ancillary Service of Voltage Control in Ukraine. IEEE International Conference on Intelligent Energy and Power Systems (IEPS). 2014. Pp. 145–148. DOI: https://doi.org/10.1109/IEPS.2014.6874167

Shydlovskyi A.K., Lypkivskyi K.O. Development of research at the Institute of Electrodynamics of the National Academy of Sciences of Ukraine on the conversion and stabilization of electromagnetic energy parameters. Tekhnichna elektrodynamika. 2007. No 3. Pp. 11–26. (Ukr)

Shydlovskyi A.K., Novsky N.O., Zharkin A.F. Stabilization of electric energy parameters in three-phase systems by semiconductor correcting devices. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2013. 378 p. (Ukr)

Zagirniak M.V., Klepikov V.B., Kovbasa S.M., Mykhalskii V.M., Peresada S.M., Sadovoi O.V., Shapoval I.A. Energy-efficient electromechnical systems of broad technology purpose. Kyiv: Institute of Electrodynamics of the NAS of Ukraine, 2018. 310 p. (Ukr)

Artemenko M.Yu., Kutafin Y.V., Mikhalsky V.M., Polishchuk S.Y., Chopyk V.V., Shapoval I.A. Energy efficient power active filtration strategies based on optimal decompositions of load currents and corresponding power losses. Tekhnichna elektrodynamika. 2020. No 3. Pp. 30–35. DOI: https://doi.org/10.15407/techned2020.03.030 (Ukr)

Volkov I.V., Podolny S.V. Energy characteristics of resonant converter with dosed energy transfer. Tekhnichna elektrodynamika. 2021. No 2. Pp. 42–46. DOI: https://doi.org/10.15407/techned2021.02.042 (Ukr)

Zharkin A., Novsky V., Popov V., Palachov S. Improving the Reliability and Power Quality in Distribution Networks with Sources of Dispersed Generation. Studies in Systems, Decision and Control, Springer. Vol. 388. Pp. 23–45. DOI: https://doi.org/10.1007/978-3-030-82926-1_2

Bondar O.I., Gluhenky O.I., Gorislavets Y.M., Zapadinchuk O.P. Numerical simulation of the thermal state of an induction duct furnace. Tekhnichna elektrodynamika. 2021. No 3. Pp. 44–49. DOI: https://doi.org/10.15407/techned2021.03.044 (Ukr)

Gorislavets Y.M., Gluhenky O.I., Bondar O.I. Circulation of metal melt in an induction duct furnace during phase control of supply voltages. Tekhnichna elektrodynamika. 2020. No 3. Pp. 79–82. DOI: https://doi.org/10.15407/techned2020.03.079 (Ukr)

Pavlov V.B., Podoltsev O.D., Pavlenko V.E. Investigation of an experimental sample of a wireless electric car charger. Tekhnichna elektrodynamika. 2021. No 5. Pp. 21–26. DOI: https://doi.org/10.15407/techned2021.05.021 (Ukr)

Zharkin A.F., Novsky V.O., Zapadinchuk O.P., Martinov V.V. Features of construction of bidirectional charging converters for the implementation of the concept. of bilateral energy exchange "VEHICLE - TO - GRID" in the case of connecting electric vehicles to general purpose electrical network. Tekhnichna elektrodynamika. 2020. No 5. Pp. 19–25. DOI: https://doi.org/10.15407/techned2020.05.019 (Ukr)

Bereka V.O., Bozhko I.V., Kondratenko I.P. Investigation of energy efficiency of pulsed barrier water treatment in drip-film state. Tekhnichna elektrodynamika. 2021. No 3. Pp. 50–57. DOI: https://doi.org/10.15407/techned2021.03.050 (Ukr)

Rashchepkin A.P., Kondratenko I.P., Karlov O.M., Krishchuk R.S. Magnetic forces and currents of the inductor for magnetic-pulse processing of welded joints of non-magnetic sheet metals. Tekhnichna elektrodynamika. 2020. No 5. Pp. 74–79. DOI: https://doi.org/10.15407/techned2020.05.074 (Ukr)

Lobanov L.M., Kondratenko I.P., Mikhalsky V.M., Pashchin M.O., Karlov O.M., Chopik V.V., Mikhoduy O.L. Electrical complex for electrodynamic processing of welded joints. Tekhnichna elektrodynamika. 2020. No 6. Pp. 61–68. DOI: https://doi.org/10.15407/techned2020.06.061 (Ukr)

Gutsalyuk V.Ya., Yurchenko O.M., Zubkov I.S. System of automatic frequency adjustment of resonant inverters of induction heating installations with pulse density modulation. Tekhnichna elektrodynamika. 2020. No 5. Pp. 35–39. DOI: https://doi.org/10.15407/techned2020.05.035 (Ukr)

Shcherba A.A., Suprunovska N.I., Shcherba M.A., Roziskulov S.S. Regulation of output dynamic characteristics of electric discharge installations with reservoir capacitors. Tekhnichna elektrodynamika. 2021. No 3. Pp. 3–9. DOI: https://doi.org/10.15407/techned2021.03.003

Suprunovska N.I., Shcherba M.A., Mykhailenko V.V., Peretyatko Yu.V. Transients at changing the configuration of the discharge circuit of the capacitor of semiconductor electrical discharge installations with an electro-spark load. Tekhnichna elektrodynamika. 2020. No 2. Pp. 3–9. DOI: https://doi.org/10.15407/techned2020.02.003

Suprunovska N.I., Shcherba M.A., Peretyatko Yu.V., Roziskulov S.S. Decrease of transients duration and improvement of dynamic characteristics of electrical discharge installations by changing the structure of their discharge circuit. Tekhnichna elektrodynamika. 2020. No 4. Pp. 15–18. DOI: https://doi.org/10.15407/techned2020.04.015

Titko O.I., Vaskovsky Yu.M. Scientific bases, methods and means of diagnostics of induction motors. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2015. 300 p. (Ukr)

Kuchinsky K.A. Thermal and thermomechanical processes in turbogenerators. Kyiv: Pro Format, 2020. 239 p. (Rus)

Antonov A.E. Electric machines of magnetoelectric type. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2011. 206 p. (Rus)

Antonov A.E. Features of the technology of slotless magnetoelectric machines. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2013. 128 p. (Rus)

Antonov A.E., Akinin K. P. Active compensation of reactive moments in an electric drive. Kyiv: Sikgroup Ukraine, 2019. 159 p. (Rus)

Akinin K.P. Structural minimization of low power electric drives based on non-contact motors with permanent magnets. Kyiv: Pro Format, 2020. 392 p. (Rus)

Grebenikov V.V., Priymak M.V. Design of the electric motor with permanent magnets for electric vehicle according the driving cycle. Tekhnichna elektrodynamika. 2018. No 5. Pp. 65–68. DOI: https://doi.org/10.15407/techned2018.05.065

Dobzhanskyi O., Hossain Eklas, Amiri Ebrahim, Gouws R., Grebenikov V., Mazurenko L., Pryjmak M., Gamaliia R. Axial-Flux PM Disk Generator With Magnetic Gear for Oceanic Wave Energy Harvesting. IEEE Access. 2019. Vol. 7. Pp. 44813–44822. DOI: https://doi.org/10.1109/ACCESS.2019.2908348 .

Grebenikov V.V., Gamaleya R.V., Sokolovsky A.N. Electric machine with axial magnetic flux, permanent magnets and multilayered printing windings. Tekhnichna elektrodynamika. 2020. No 2. Pp. 28–35. DOI: https://doi.org/10.15407/techned2020.02.028.

Grebenikov V., Dobzhanskyi O., Gamaliia R. Gouws R. Improvement of Transverse-Flux Machine Characteristics by Finding an Optimal Air-Gap Diameter and Coil Cross-Section at the Given Magneto-Motive Force of the PMs. Energies. 2021. Vol. 14. Issue 3. Pp. 1–14. DOI: https://doi.org/10.3390/en14030755.

Grebenikov V.V., Gamaliia R. V., Dadychyn S.A. Comparative analysis of magnetic systems of permanent magnet motors for tram. Tekhnichna elektrodynamika. 2021. No 5. Pp. 27–32. DOI: https://doi.org/10.15407/techned2021.05.027

Mazurenko L.I., Shikhnenko M.O., Dzhura O.V., Bilik O.A. Follow-up of the starter mode of the valve-inductor starter-generator. Bulletin of NTU KhPI. Series: Electric machines and electromechanical transformation of energy. 2020. No 3(1357). Pp. 97–100. DOI: https://doi.org/10.20998/2409-9295.2020.3.16 (Ukr)

Mazurenko L.I., Dzhura O.V., Shikhnenko M.O., Bilik O.A. Technical implementation and follow-up of the experimental design of the valve-inductor starter-generator. Pratsi Instytutu Elektrodynamiky Natsionalnoi Academi] Nauk Ukrainy. 2020. Vyp. 55. Pp. 72–77. DOI: https://doi.org/10.15407/publishing2020.55.072 (Ukr)

Bibik O.V., Mazurenko L.I., Shykhnenko M.O. Formation of characteristics of operating modes of switched reluctance motors with periodic load. Electrical engineering & electromechanics. 2019. No 4. Pp. 12–16. DOI: https://doi.org/10.20998/2074-272X.2019.4.0

Mazurenko L. I., Lishchenko A. I. Asynchronous generators with valve and valve-capacitive excitation for autonomous power plants. Kyiv: Naukova Dumka, 2011. 271 p. (Rus)

Mazurenko L.I., Dzhura O.V., Romanenko V.I. Technical implementation and experimental follow-up of an asynchronous generator with gate drive and vector control. Electromechanical and energy saving systems. 2015. No 4(32). Pp. 34–40. (Ukr)

Mazurenko L.I., Vasiliv K.M., Dzhura O.V., Kotsyuruba A.V. Imitation model and algorithm for implementation of an autonomous hydro-wind power system. Tekhnichna elektrodynamika. 2020. No 1. Pp. 17–26. DOI: https://doi.org/10.15407/techned2020.01.017 (Ukr)

Shurub Yu.V., Dudnik A.O., Lavinsky D.S. Optimization of regulators in frequency controlled asynchronous electric drives with stochastic biases. Tekhnichna elektrodynamika. 2016. No 4. Pp. 53–55. DOI: https://doi.org/10.15407/techned2016.04.053 (Ukr)

Popovych O.M., Golovan І.V. Study of changed main flux reactance of squirrel-cage induction motors using field analysis of their starting characteristics. Tekhnichna elektrodynamika. 2018. No 5. Pp. 69–72. DOI: https://doi.org/10.15407/techned2018.05.069

Popovych O.M., Golovan І.V. Study of starting regimes of induction motors using equivalent parameters of quasi-3d field model. Tekhnichna elektrodynamika. 2019. No 1. Pp. 34–37. DOI: https://doi.org/10.15407/techned2019.01.034

Bibik O.V., Golovan І.V., Popovych O.M., Shurub Y.V. Efficient operating conditions of induction motors for piston compressors with frequency regulation. Tekhnichna elektrodynamika. 2020. No 1. Pp. 33–39. DOI: https://doi.org/10.15407/techned2020.01.033

Bibik O.V., Popovich O.M. Increasing the efficiency of electric drives with periodical loading by using comprehensive mathematical modeling means. Priority areas for development of scientific research: domectic and foreing experience: collective monograph. 3rd ed. Riga, Latvia: Baltija Publishing, 2021. 260 p. Pp. 1–19. DOI: https://doi.org/10.30525/978-9934-26-049-0-31

Kireyev V.G., Akinin K.P., Filomenko A.A. Features and principles of the development of brushless magnetoelectric systems of the return-rotary motion. Tekhnichna elektrodynamika. 2021. No 3. Pp. 19–27. DOI: https://doi.org/10.15407/techned2021.03.019

Grinevich F.B., Taranov S.G. Development of research in the scientific direction "Information and measuring systems and metrological support in the power industry". Tekhnichna elektrodynamika. 2007. No 4. Pp. 3–20. (Ukr)

Surdu M.M., Monastyrsky Z.Ya. Variational methods for improving the accuracy of immittance meters. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2015. 385 p. (Ukr)

Melnyk V.G., Vasylenko A.D., Semenycheva L.N., Slitskiy O.V., Saiapina O.Y., Dzyadevych S.V. Solutions for enhancement of sensitivity and metrological reliability of conductometric biosensor systems. Engineering Research Express. 2021. Vol. 3. No 4. DOI: https://doi.org/10.1088/2631-8695/ac2a0d

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2022 Array

Переглядів анотації: 50 | Завантажень PDF: 17


Дані завантаження ще не доступні.