FREQUENCY DEPENDENCE OF DIELECTRIC LOSS TANGENT ON THE DEGREE OF HUMIDIFICATION OF POLYETHYLENE CABLE INSULATION
ARTICLE_5_PDF (Українська)

Keywords

polyethylene insulation
equivalent circuit
dielectric loss tangent
water micro-inclusions
treeing
dielectric spectroscopy
relaxation processes полиэтиленовая изоляция
электрическая схема замещения
тангенс угла диэлектрических потерь
водные микровключения
триинги
диэлектрическая спектроскопия
релаксационные процессы

How to Cite

[1]
Bezprozvannych , A. et al. 2016. FREQUENCY DEPENDENCE OF DIELECTRIC LOSS TANGENT ON THE DEGREE OF HUMIDIFICATION OF POLYETHYLENE CABLE INSULATION . Tekhnichna Elektrodynamika. 3 (Apr. 2016), 018. DOI:https://doi.org/10.15407/techned2016.03.018.

Abstract

It is shown that application of the high-frequency relaxation spectroscopy is expedient at the analysis of processes of appearance of free moisture in the polymeric insulation of power cables. The calculated and experimental frequency dependences of dielectric loss tangent on the degree of humidification of cable insulation are given. It is revealed that at prolonged moistening of insulation the peaks of relaxation losses are displaced into area of higher frequencies and there are the additional maxima corresponding to dispersion of energy dissipation in the new elements of insulation. The range of change of frequency of relaxation losses depends on concentration of free moisture in insulation and its electro-physical and morphological properties.  References 19, table 1, figure 5.

https://doi.org/10.15407/techned2016.03.018
ARTICLE_5_PDF (Українська)

References

Bezprozvannych G.V., Naboka B.G. Mathematical models and methods of calculation of electrical designs. – Kharkiv: Natsionalnyi Tekhnicheskii Universitet "KhPI". – 2012. – 108 p. (Rus)

Bezprozvannych G.V., Naboka B.G., Moskvitin E.S. Justification of the electrical characteristics of semiconducting shields of high voltage power cables with cross-linked insulation // Elektrotekhnika i Elektromekhanika. – 2010. − No 3. – Pр. 82–86. (Rus)

Suprunovska N.I., Shcherba A.A. Processes of energy redistribution between parallel connected capacitors // Tekhnichna Elektrodynamika. – 2015. – No 4. – Pp. 3–11. (Rus)

Hippel A.R. Dielectrics and Wave. – Moskva: Izdatelstvo inostrannoi literatury. – 1977. – 439 p. (Rus)

Shydlovskii А.K., Shcherba A.A., Podoltsev A.D., Kucheriava I.M. Cables with polymeric insulation on ultrahigh voltage. – Кiev: Institut Elektrodinamiki Natsionalnoi Akademii Nauk Ukrainy, 2013. – 552 p. (Rus)

Shcherba A.A., Podoltsev A.D., Kucheriava I.M. Electromagnetic Processes in 330 kV Cable Line With Polyethylene Insulation // Tekhnichna Elektrodynamika. – 2013. – No 1. – Pp. 9–15. (Rus)

Shcherba М.А., Podoltsev A.D. Electric field and current density distribution near water inclusions of polymer insulation of high-voltage cables in view of its nonlinear properties // Tekhnichna Elektrodynamika. – 2016. – No 1. – Pp. 11–18. (Rus)

Boggs S.A. Semi-empirical high-field conduction model for polyethylene and implications thereof // Dielectrics and Electrical Insulation. – IEEE Transactions on 2.1. – 1995. – Рр. 97−106.

Bellet J.J., Matey G., Rose L., Rose V. Some Aspects of the Relationship between Water Treeing, Morphology, and Microstructure of Polymers // IEEE Transactions on Dielectrics and Electrical Insulation. – 1987. – Vol. EI–22. – No 2. – Pp. 211–217.

Ciuprina F., Teissèdre G., Filipini J.C. Polyethylene crosslinking and water treeing // Polymer. – 2001. – Vol. 42. – Pр. 7841–7846.

Dissado L.A. Understanding electrical trees in solids: from experiment to theory // IEEE Transactions on Dielectrics and Electrical Insulation. – 2002. – Vol. 9. – No 4. – Pр. 483–497.

Dissado L.A. and Fothergill J.C. Electrical degradation and breakdown in polymers // IEE Materials and Devices Series 9, 1992. – Peter Peregrinus. Ltd., London, UK. – 601 p.

Fothergrill J.C. The Measurement of Very Low Conductivity and Dielectric Loss in XLPE Cables // IEEE Transactions on Dielectrics and Electrical Insulation. – 2011. – Vol. 15. – No 5. – Pр. 1544–1553.

Kato T., Yamaguchi T., Komori T. Influence of structural change by AC voltage pretesting on electrical-tree inception voltage of LDPE with water-tree degradation // Annual Report Conference on Electrical Insulation and Dielectric Phenomena. – Montreal, Canada: IEEE. – 2012. – Pр. 847–850.

Mugala G., Eriksson R., Gäfvert U., Pettersson P. Measurement technique for high frequency characterization of semi-conducting materials in extruded cables // IEEE Transactions on Dielectrics and Electrical Insulation. – 2004. – Vol. 11. – Pр. 471–480.

Shcherba M.A. Dependences of electric field amplification during water tree branching in solid dielectrics // Intelligent Energy and Power Systems (IEPS), 2014 IEEE International Conference on. – 2014. – Pр. 46–49.

Werelius P., Thärning P., Eriksson R., Holmgren B. & Gäfvert U. Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables // Dielectrics and Electrical Insulation, IEEE Transactions on. – 2001. – Vol. 8. – No 1. – Pp. 27–42.

Zaengl W.S. Dielectric spectroscopy in time and frequency domain for HV power equipment. I. Theoretical considerations // Electrical Insulation Magazine, IEEE. – 2003. – Vol. 19. – No 5. –Pp. 5–19.

German-Sobek M., Cimbala R., Kirăly J. Change of Dielectric Parameters of XLPE Cable due to Thermal Aging // Electrotehnică, Electronică, Automatică (EEA). – 2014. – Vol. 62. – No 3. – Pр. 47–53.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 166 | PDF Downloads: 23

Downloads

Download data is not yet available.