ЧАСТОТНАЯ ЗАВИСИМОСТЬ ТАНГЕНСА УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ ОТ СТЕПЕНИ УВЛАЖНЕНИЯ ПОЛИЭТИЛЕНОВОЙ ИЗОЛЯЦИИ КАБЕЛЕЙ
ARTICLE_5_PDF

Ключові слова

polyethylene insulation
equivalent circuit
dielectric loss tangent
water micro-inclusions
treeing
dielectric spectroscopy
relaxation processes полиэтиленовая изоляция
электрическая схема замещения
тангенс угла диэлектрических потерь
водные микровключения
триинги
диэлектрическая спектроскопия
релаксационные процессы

Як цитувати

[1]
Беспрозванных , А., Кессаев , А. і Щерба , М. 2016. ЧАСТОТНАЯ ЗАВИСИМОСТЬ ТАНГЕНСА УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ ОТ СТЕПЕНИ УВЛАЖНЕНИЯ ПОЛИЭТИЛЕНОВОЙ ИЗОЛЯЦИИ КАБЕЛЕЙ. ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА. 3 (Квіт 2016), 018. DOI:https://doi.org/10.15407/techned2016.03.018.

Анотація

Показано, что при анализе процессов появления свободной влаги в полимерной изоляции силовых кабелей целесообразно применять высокочастотную релаксационную спектроскопию. Приведены расчетные и экспериментальные частотные зависимости тангенса угла диэлектрических потерь от степени увлажнения изоляции кабелей. Выявлено, что при длительном ее увлажнении пики релаксационных потерь смещаются в область более высоких частот и возникают дополнительные максимумы, соответствующие рассеянию энергии на новых элементах изоляции. Диапазон изменения частоты релаксационных потерь зависит от концентрации свободной влаги в изоляции и ее электрофизических и морфологических свойств.  Библ. 19, табл. 1, рис. 5.

https://doi.org/10.15407/techned2016.03.018
ARTICLE_5_PDF

Посилання

Bezprozvannych G.V., Naboka B.G. Mathematical models and methods of calculation of electrical designs. – Kharkiv: Natsionalnyi Tekhnicheskii Universitet "KhPI". – 2012. – 108 p. (Rus)

Bezprozvannych G.V., Naboka B.G., Moskvitin E.S. Justification of the electrical characteristics of semiconducting shields of high voltage power cables with cross-linked insulation // Elektrotekhnika i Elektromekhanika. – 2010. − No 3. – Pр. 82–86. (Rus)

Suprunovska N.I., Shcherba A.A. Processes of energy redistribution between parallel connected capacitors // Tekhnichna Elektrodynamika. – 2015. – No 4. – Pp. 3–11. (Rus)

Hippel A.R. Dielectrics and Wave. – Moskva: Izdatelstvo inostrannoi literatury. – 1977. – 439 p. (Rus)

Shydlovskii А.K., Shcherba A.A., Podoltsev A.D., Kucheriava I.M. Cables with polymeric insulation on ultrahigh voltage. – Кiev: Institut Elektrodinamiki Natsionalnoi Akademii Nauk Ukrainy, 2013. – 552 p. (Rus)

Shcherba A.A., Podoltsev A.D., Kucheriava I.M. Electromagnetic Processes in 330 kV Cable Line With Polyethylene Insulation // Tekhnichna Elektrodynamika. – 2013. – No 1. – Pp. 9–15. (Rus)

Shcherba М.А., Podoltsev A.D. Electric field and current density distribution near water inclusions of polymer insulation of high-voltage cables in view of its nonlinear properties // Tekhnichna Elektrodynamika. – 2016. – No 1. – Pp. 11–18. (Rus)

Boggs S.A. Semi-empirical high-field conduction model for polyethylene and implications thereof // Dielectrics and Electrical Insulation. – IEEE Transactions on 2.1. – 1995. – Рр. 97−106.

Bellet J.J., Matey G., Rose L., Rose V. Some Aspects of the Relationship between Water Treeing, Morphology, and Microstructure of Polymers // IEEE Transactions on Dielectrics and Electrical Insulation. – 1987. – Vol. EI–22. – No 2. – Pp. 211–217.

Ciuprina F., Teissèdre G., Filipini J.C. Polyethylene crosslinking and water treeing // Polymer. – 2001. – Vol. 42. – Pр. 7841–7846.

Dissado L.A. Understanding electrical trees in solids: from experiment to theory // IEEE Transactions on Dielectrics and Electrical Insulation. – 2002. – Vol. 9. – No 4. – Pр. 483–497.

Dissado L.A. and Fothergill J.C. Electrical degradation and breakdown in polymers // IEE Materials and Devices Series 9, 1992. – Peter Peregrinus. Ltd., London, UK. – 601 p.

Fothergrill J.C. The Measurement of Very Low Conductivity and Dielectric Loss in XLPE Cables // IEEE Transactions on Dielectrics and Electrical Insulation. – 2011. – Vol. 15. – No 5. – Pр. 1544–1553.

Kato T., Yamaguchi T., Komori T. Influence of structural change by AC voltage pretesting on electrical-tree inception voltage of LDPE with water-tree degradation // Annual Report Conference on Electrical Insulation and Dielectric Phenomena. – Montreal, Canada: IEEE. – 2012. – Pр. 847–850.

Mugala G., Eriksson R., Gäfvert U., Pettersson P. Measurement technique for high frequency characterization of semi-conducting materials in extruded cables // IEEE Transactions on Dielectrics and Electrical Insulation. – 2004. – Vol. 11. – Pр. 471–480.

Shcherba M.A. Dependences of electric field amplification during water tree branching in solid dielectrics // Intelligent Energy and Power Systems (IEPS), 2014 IEEE International Conference on. – 2014. – Pр. 46–49.

Werelius P., Thärning P., Eriksson R., Holmgren B. & Gäfvert U. Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables // Dielectrics and Electrical Insulation, IEEE Transactions on. – 2001. – Vol. 8. – No 1. – Pp. 27–42.

Zaengl W.S. Dielectric spectroscopy in time and frequency domain for HV power equipment. I. Theoretical considerations // Electrical Insulation Magazine, IEEE. – 2003. – Vol. 19. – No 5. –Pp. 5–19.

German-Sobek M., Cimbala R., Kirăly J. Change of Dielectric Parameters of XLPE Cable due to Thermal Aging // Electrotehnică, Electronică, Automatică (EEA). – 2014. – Vol. 62. – No 3. – Pр. 47–53.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2022 Array

Переглядів анотації: 54 | Завантажень PDF: 9

Завантаження

Дані завантаження ще не доступні.