INTERDEPENDENT TRANSIENT PROCESSES IN CIRCLES OF BIPOLAR DISCHARGE PULSE CURRENT GENERATOR WITH R-L-C LOAD AND LIMITED POSITIVE VOLTAGE FEEDBACK
ARTICLE_1_PDF

Keywords

transient
bipolar discharge pulse generator
discharge
pulse current
voltage feedback перехідний процес
біполярний формувач розрядних імпульсів
розряд
імпульсний струм
зворотний зв'язок по напрузі

How to Cite

[1]
Roziskulov, S., Vinnychenko, D. and Suprunovska, N. 2025. INTERDEPENDENT TRANSIENT PROCESSES IN CIRCLES OF BIPOLAR DISCHARGE PULSE CURRENT GENERATOR WITH R-L-C LOAD AND LIMITED POSITIVE VOLTAGE FEEDBACK. Tekhnichna Elektrodynamika. 3 (Apr. 2025), 003. DOI:https://doi.org/10.15407/techned2025.03.003.

Abstract

The paper analyzes the interdependent transient processes in the discharge circuits of a bipolar discharge pulse generator (DPG) with R-L-C load and limited positive voltage feedback. The analytical dependence of the value of the initial voltage on the capacitor connected in series with the load on the value of the Q factor of the discharge circuit of the DPG was obtained. The optimal electrical parameters of these circuits have been determined to ensure high dynamic and energy indicators of impulse currents in an electric spark load. It is substantiated that the serial connection of a capacitor with an electric spark load in the discharge circuit of a bipolar DPG with a capacitive storage of electrical energy of high energy capacity allows to increase (maximum twice) the initial rate of current rise in the electric spark load of a bipolar DPG and significantly improve the energy indicators of discharge impulse currents. The short-circuit currents value of the DPG load is limited by the value of the characteristic resistance of the DPG discharge circuit, and their flow time corresponds to the self-oscillation period of the DPG discharge circuit in this mode of operation. At the same time, electrical energy is not dissipated in the discharge circuit of the DPG, but it is almost completely recovered to the capacitors on output of direct voltage formers. References 15, figures 6.

https://doi.org/10.15407/techned2025.03.003
ARTICLE_1_PDF

References

Pavlov G., Obrubov A., Vinnychenko I. Design Procedure of Static Characteristics of the Resonant Converters. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 26-28 Au-gust 2021. Pp. 401-406. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575698.

Vinnychenko D.V., Nazarova N.S. Source of the stabilized discharge current in carbon-containing gases with frequency-parametric regulation. Tekhnichna Elektrodynamika. 2019. No 1. Pp. 25-28. DOI: https://doi.org/10.15407/techned2019.01.025. (Ukr)

Shcherba A.A., Ivanov A.V. High-voltage electrical complex for electric-discharge processing of metal melts with increased intensity of electrical force action and mixing. Elektronnaia Obrabotka Materialov. 2014. Vol. 50. No 2. Pp. 108-116. (Rus)

Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark Erosion: a High Production Rate Method for Producing Bi0.5Sb1.5Te3 Nanoparticles With Enhanced Thermoelectric. Nanotechnology. 2012. Vol. 23. Pp. 415604-1–415604-7. DOI: https://doi.org/10.1088/0957-4484/23/41/415604.

Kornev Ia., Saprykin F., Lobanova G., Ushakov V., Preis S. Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics. 2018. Vol. 96. Pp. 111-118. DOI: https://doi.org/10.1016/j.elstat.2018.10.008.

Ochin P., Gilchuk A.V., Monastyrsky G.E., Koval Yu.N., Shcherba A.A., Zaharchenko S.N. Martensitic Trans-formation in Spark Plasma Sintered Compacts of Ni-Mn-Ga Powders Prepared by Spark Erosion Method in Cryogenic Liquids. Materials Science Forum. 2013. Vols. 738-739. Trans Tech Publications, Ltd. 2013. Pp. 451-455. DOI: https://doi.org/10.4028/www.scientific.net/MSF.738-739.451.

Nguyen P.K., Sungho J., Berkowitz A.E. MnBi particles with high energy density made by spark erosion. J. Appl. Phys. 2014. Vol. 115. Iss. 17. Pp. 17A756-1. DOI: https://doi.org/10.1063/1.4868330.

Kolbasov G.Ya., Ustinov A.I., Shcherba A.A., Perekos A.Ye., Danilov M.O., Vyunova N.V., Zakharchenko S.N., Hossbah G. Application of volumetric electric-spark dispersion for the fabrication of Ti-Zr-Ni hydrogen storage alloys. Journal of Power Sources. 2005. Vol. 150. Pp. 276-281. DOI: https://doi.org/10.1016/j.jpowsour.2005.02.025

Zakharchenko S.N., Kondratenko I.P., Perekos A.E., Zalutsky, V.P., Kozyrsky V.V., Lopatko K.G. Influence of discharge pulses duration in a layer of iron granules on the size and structural-phase conditions of its electroerosion particles. Eastern-European Journal of Enterprise Technologies. 2012. Vol. 6. No 5 (60). Pp. 66-72. (Rus).

Shcherba A.A., Suprunovska N.I., Shcherba M.A., Roziskulov S.S. Regulation of output dynamic characteristics of electric discharge installations with reservoir capacitors. Tekhnychna Elektrodynamika. 2021. No 3. Pp. 3-9. DOI: https://doi.org/10.15407/techned2021.03.003.

Ivashchenko D.S., Shcherba A.A. Analysis of sequences of interrelated transient processes at stochastic changes in load resistance. Energosberezhenie, energetika, energoaudit. 2013. Special issue. Vol. 2. No 8 (114). Pp. 4-11. (Rus)

Ivashchenko D., Shcherba A., Suprunovska N. Analyzing Probabilistic Properties of Electrical Characteristics in the Circuits Containing Stochastic Load. Proceedings of the IEEE International Conference on Intelligent Energy and Power Systems (IEPS-2016), Kyiv, Ukraine, June 7-11, 2016. Pp. 45-48. DOI: https://doi.org/10.1109/IEPS.2016.7521887.

Demirchyan K.S., Nejman L.R., Korovkin N.V., Chechurin V.L. Electrical engineering theory. Vol. 2. Saint-Petersburg: Piter, 2003. 576 p. (Rus)

Pavlov G., Vinnichenko I., Pokrovskiy M. Estimation of Energy Efficiency of the Frequency Converter Based on the Resonant Inverter with Pulse-Density Control. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, Ukraine, 10-14 September 2018. Pp. 101-105. DOI: https://doi.org/10.1109/IEPS.2018.8559499.

Zeveke G.V., Ionkin P.A., Netushil A.V. Strakhov S.V. Fundamentals of Circuit Theory. Textbook for Universities. Moskva: Energiia, 1975. 752 p. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array

Abstract views: 213 | PDF Downloads: 65

Downloads