INCREASING THE SENSITIVITY OF ELECTROMAGNETIC-ACOUSTIC TRANSDUCERS FOR TESTING, MEASUREMENT AND DIAGNOSTICS OF FERROMAGNETIC METAL PRODUCTS VIA INCREASE IN THE VALUE OF MAGNETIC FIELD INDUCTION. OVERVIEW
ARTICLE_10_PDF (Українська)

Keywords

ultrasound
sensitivity
measurement
testing
diagnostics
EMAT
pulse magnet
ferromagnetic metal product ультразвук
чутливість
вимірювання
контроль
діагностика
ЕМАП
імпульсний магніт
феромагнітний металовиріб

How to Cite

[1]
Сучков, Г., Мигущенко, Р., Плєснецов, С., Плєснецов, Ю., Курандо, О., Алексіїв, А., Бороденко, О., Бутенко, О. and Рибалко, А. 2025. INCREASING THE SENSITIVITY OF ELECTROMAGNETIC-ACOUSTIC TRANSDUCERS FOR TESTING, MEASUREMENT AND DIAGNOSTICS OF FERROMAGNETIC METAL PRODUCTS VIA INCREASE IN THE VALUE OF MAGNETIC FIELD INDUCTION. OVERVIEW. Tekhnichna Elektrodynamika. 2 (Mar. 2025), 085. DOI:https://doi.org/10.15407/techned2025.02.085.

Abstract

The analysis of information sources on the development and usage of electromagnetic-acoustic methods and means of ultrasonic inspection, measurements and diagnostics was performed. It is shown that electromagnetic-acoustic (EMA) transducers (EMAT) with permanent magnets have significant advantages compared to piezoelectric transducers, but also have disadvantages, especially in the inspection of ferromagnetic metal products, both in normal and hot conditions, especially when using them in portable ultrasonic devices. Many experts suggest eliminating the disadvantages of EMAT with permanent magnets by using pulsed magnetization. This direction of research is promising, especially when testing hot metal, because it allows for creation of pulsed magnetic fields with a peak value of 2...3 and even 10 T, making it possible to significantly increase the sensitivity of testing, since the coefficient of conversion of electromagnetic energy into ultrasonic and vice versa depends on the induction of magnetic fields squarely. But until now, data on the widespread use of pulsed magnetization in portable EMATs has not been established. This situation is caused by a small gap between the EMAT and the metal, insufficient development of the EMAT functioning technologies, the complexity of the hardware implementation, difficulties in dealing with interferences that occur during the excitation of pulsed magnetic field, etc. Therefore, for the implementation of such a promising direction of development of sensitive EMA transducers, theoretical and practical developments are to be carried out, which is to make it possible to introduce high-tech means of inspection, measurements and diagnostics into production. References 31, figures 9.

https://doi.org/10.15407/techned2025.02.085
ARTICLE_10_PDF (Українська)

References

Troitskyi V.O. Borys Paton – the founder of the science of flaw detection and structure monitoring. NK inform. Kyiv: Vydavnytstvo Interservis, 2023. 60 p. (Ukr)

Suchkov H.M. Development of the theory and practice of creating devices for electromagnetic-acoustic control of metal products: author’s abstract of Dr. tech. sci. diss.: 05.11.13. National Technical University Kharkiv Polytechnic Institute. Kharkiv. 2005. 37 p. (Ukr)

Desiatnichenko O.V. Electromagnetic-acoustic thickness gauge for checking metal products with dielectric coatings: Ph.D. dissertation: 05.11.13. National Technical University Kharkiv Polytechnic Institute. Kharkiv. 2015. 172 p. (Ukr)

Pliesnetsov S.Yu. Development of methods and means for electromagnetic-acoustic control of rod, tube and sheet metal products: author’s abstract of Dr. tech. sci. diss.: 05.11.13. National Technical University Kharkiv Polytechnic Institute. Kharkiv. 2021. 40 p. (Ukr)

Ermolov I.N., Lange Ju. V. Nondestructive testing: handbook: in 8 vols. Vol. 3 Ultrasonic testing. Ed. V.V. Kljuev. 2008. Moscow. Mashinostroenie. 864 p. (Rus)

Plesnetsov S.Yu., Suchkov H.M., Korzh D.I., Suvorova M.D. New theoretical research and developments in the field of electromagnetic-acoustic transformation (Review)). Tekhnicheskaia diagnostika i nerazrushaiushchii kontrol. 2018. No 2. Pp. 24–31. (Rus) DOI: https://doi.org/10.15407/tdnk2018.02.03

Suchkov H.M., Plesnetsov S.Yu., Meshcheriakov S.Yu., Yudanova N.N. New developments in electromagnetic-acoustic transducers (Review). Tekhnicheskaia diagnostika i nerazrushaiushchii kontrol. 2018. No 3. Pp. 27–34. DOI: https://doi.org/10.15407/tdnk2018.03.03. (Rus)

Suchkov H.M., Petryshchev O.N., Plesnetsov S.Yu. Sensitivity of ultrasonic testing by EMA method in detection of natural internal defects of metal products. Possibilities of EMA thickness measurement (Review of Part 3)). Tekhnicheskaia diagnostika i nerazrushaiushchii kontrol. 2019. No 2. Pp. 51–57. (Rus) DOI: https://doi.org/10.15407/tdnk2019.02.08

Myhushchenko R.P., Suchkov H.M., Radev Kh.K., Petryshchev O.M., Desiatnychenko O.V. Electromagnetic-acoustic transducer for ultrasonic thickness measurement of ferromagnetic metal products without removing the dielectric coating. Tekhnichna elektrodynamika. 2016. No 2. Pp. 78–82. DOI: https://doi.org/10.15407/techned2016.02.078. (Rus)

Muraveva O.V., Murav'ev A.F., Basharova (Brester) A.F. Thermal Treatment Effect and Structural State of Rod-Shaped Assortment 40Kh Steel on the Speed of Ultrasound Waves and Poisson Coefficient. Steel in Translation. 2020. Vol. 50. No 8. Pр. 579–584. DOI: https://doi.org/10.3103/S0967091220080082

NORDINKRAFT. The quality guard. URL: www.nordinkraft.de/ (accessed at 08.05.2020).

Tsapenko V.K., Kuts Yu.V. Fundamentals of non-destructive testing: handbook. Kyiv: National Technical University of Ukraine Kiev Polytechnic Institute, 2010. 448 p. (Ukr)

Boliukh V.F., Kocherha O.I., Shchukin I.S. Comparative analysis of structural types of combined linear pulse electromechanical converters. Tekhnichna elektrodynamika. 2018. No 4. Pp. 84–88. DOI: https://doi.org/10.15407/techned2018.04.084. (Ukr)

Shevaldykin V.G., Bobrov V.T., Alekhin S.G. EMAT transformation in pulsed magnetic field and its use in portable instruments for acoustic measurements. 16th World Conference on Nondestructive Testing. Montréal, Canada. August 30 – September 3, 2004. Book of Abstracts. TS3.24.3. 88 p.

Salam Bussi. Electromagnetic-acoustic transducer for ultrasonic metalware inspection: PhD dissertation: 05.11.13. National Technical University Kharkiv Polytechnic Institute. Kharkiv. 2020. 158 p. (Ukr)

Salam Bussi, Plesnietsov S.Yu. Practical developments of electromagnetic-acoustic transducers. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». 2019. No 26 (1351). Pp. 57–65. (Ukr)

Mihajlov A.V., Gobov Ju.L., Smorodinskij Ja.G., Shherbinin S.V. Electromagnetic-acoustic transducer with pulsed magnetization. Defektoskopija. 2015. No 8. Pp. 14–23. (Rus). DOI: https://doi.org/10.1134/S1061830915080069

Heng Zhang, Shu-juan Wang, Guo-fu Zhai, Ri-liang Su. Design of bulk wave EMAT using a pulsed electromagnet. IEEE Far East Forum on Nondestructive Evaluation/Testing (FENDT), Chengdu, China, 20-23 June 2014. DOI: https://doi.org/10.1109/FENDT.2014.6928272.

Hernandez-Valle F., Dixon S. Pulsed electromagnet EMAT for ultrasonic measurements at elevated temperatures. Insight – Non-Destructive Testing and Condition Monitori. 2011. Vol. 53. Issue 2. Pp. 96–99. DOI: https://doi.org/10.1784/insi.2011.53.2.96.

Ogata S., Uchimoto T., Takagi T., Dobmann G. Development and performance evaluation of a high-temperature electromagnetic acoustic transducer for monitoring metal processing. Int. J. Appl. Electrom. 2018. Vol. 58. No 3. Pp. 309–318. DOI: https://doi.org/10.3233/JAE-180016.

Hernandez-valle F., Dixon S. Initial tests for designing a high temperature EMAT with pulsed electromagnet. NDT&E International. 2010. Vol. 4. Issue 2. Pp. 171–175. DOI: https://doi.org/10.1016/j.ndteint.2009.10.009

Guofu Zhai, Bao Liang, Xi Li, Yuhang Ge, Shujuan Wang. High-temperature EMAT with double-coil configuration generates shear and longitudinal wave modes in paramagnetic steel. NDT & E International. 2022. Vol. 125. Pp. 1–12. DOI: https://doi.org/10.1016/j.ndteint.2021.102572.

Salam Bussi, Suchkov G., Mygushchenko R., Kropachek O., Plesnetsov S. Electromagnetic-acoustic Transducers for Ultrasonic Measurements, Testing and Diagnostics of Ferromagnetic Metal Products. Ukrainskyi metrolohichnyi zhurnal. No 4. Pp. 41−49. DOI: https://doi.org/10.24027/ 2306-7039.4.2019.195956.

Suzhen Liu, Ke Chai, Chuang Zhang, Liang Jin and Qingxin Yang. Electromagnetic Acoustic Detection of Steel Plate Defects Based on High-Energy Pulse Excitation. Applied Sciences. 2020. Vol. 10(16). Article ID 5534. DOI: https://doi.org/10.3390/app10165534.

Donchenko A.V., Myhushchenko R.P. Suchkov H.M., Kropachek O.Yu. Cover combined electromagnetic-acoustic transducer with pulsed magnetization for ferromagnetic metalware inspection. Patent UA №156088. 2024. (Ukr)

Myhushchenko R.P., Suchkov H.M., Serpukhov O.V., Koshkarov Yu.Iu., Tymofieiev V.D., Bobrov O.H. Electromagnetic-acoustic transducer for diagnostics of metal armor via ultrasonic pulses. Patent UA №156101. 2024. (Ukr)

Suchkov H.M., Salam Bussi. Modeling of the polarizing magnetic field of the electromagnetic-acoustic converter of electromagnetic energy into ultrasound). Tezy 19 mizhnarodnoi naukovo-tekhnichnoi konferentsii Problemy informatyky ta modeliuvannia (PIM-2019), Ukraine, Kharkiv – Odesa, 11–16 September 2019. P. 79. (Ukr)

Suchkov H.M., Salam Bussi. Electromagnetic-acoustic transducers with pulsed sources of polarizing magnetic field). Tekhnichna diahnostyka i neruinivnyi kontrol. 2020. No 1. Pp. 1–6. (Ukr)

Fortunko C.N. Maclauchlan D. Rulsed electromagnets for EMATS. Fracture and Deformation Division. National Bureau of Standards. Boulder, CO 80303.

Ambuj K. Gautam, Ching-Chung Yin, Bishakh Bhattacharya. A new chevron electromagnetic acoustic transducer design for generating shear horizontal guided wave. Ultrasonics. 2023. Vol. 135. Pp. 107-137. DOI: https://doi.org/10.1016/j.ultras.2023.107137

Suchkov H.M., Donchenko A.V. Improvement of electromagnetic-acoustic transducers for ultrasonic quality control of ferromagnetic metal products). Zbirnyk tez dopovidei Mizhnarodnoi naukovoi internet-konferentsii Informatsiine suspilstvo: tekhnolohichni, ekonomichni ta tekhnichni aspekty stanovlennia (Ternopil, Ukraine – Perevorsk, Poland). February 6-7, 2023. Vyp. 74. Pp. 192–194. (Ukr)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array

Abstract views: 186 | PDF Downloads: 32

Downloads