DISCRETE NONLINEAR-PROBABILISTIC MODEL OF THE EQUIVALENT ELECTRICAL RESISTANCE OF A LAYER OF METAL GRANULES
ARTICLE_1_PDF (Українська)

Keywords

resistance distribution
spark-erosion load
discharge current
nonlinear-probabilistic model розподіл опору
іскроерозійне навантаження
розрядний струм
нелінійно-імовірнісна модель

How to Cite

[1]
Шидловська, Н. and Захарченко, С. 2021. DISCRETE NONLINEAR-PROBABILISTIC MODEL OF THE EQUIVALENT ELECTRICAL RESISTANCE OF A LAYER OF METAL GRANULES. Tekhnichna Elektrodynamika. 2 (Feb. 2021), 003. DOI:https://doi.org/10.15407/techned2021.02.003.

Abstract

Two strategies for constructing nonlinear-probabilistic models of the equivalent electrical resistance of a layer of metal granules at their spark-erosion and plasma-erosion treatment and algorithms for their implementation are presented. A method for taking into account the parametric properties of such loads in their nonlinear and nonlinear-probabilistic models is described. Based on the data of direct experiments, the distributions of the electrical resistance of a layer of aluminum granules in tap water were obtained for eleven fixed values of the discharge current in it for both the leading and trailing edges of its pulses. The features of these distributions are described for different edges of the discharge current pulses. It has been proved that the obtained distributions can be adequately described by the normal law. The parameters of the normal law for each distribution obtained as a result of direct experiments are founded by the method of moments. A nonlinear-probabilistic model of the equivalent electrical resistance of a layer of aluminum granules in tap water is created, taking into account the main hysteresis of the dependence of resistance on current. It is shown that at large values of discharge currents, the nonlinear-probabilistic model of the equivalent electrical resistance of the layers of metal granules tends to degenerate into a nonlinear model. References 27, figures 4, a table.

https://doi.org/10.15407/techned2021.02.003
ARTICLE_1_PDF (Українська)

References

Zakharchenko S.M. Statistical Research of Equivalent Electric Resistance of the Heterogeneous Current-carrying Medium at its Electroerosive Processing on an Example of Granules of Aluminum in Water. Naukovyi Vіsnyk Natsіonalnoho hіrnychoho unіversytetu. 2013. No 1 (133). Pp. 62–67. (Ukr)

Ivashchenko D.S., Shcherba A.A., Suprunovska N.I. Analyzing Probabilistic Properties of Electrical Characteristics in the Circuits Containing Stochastic Load. Proc. IEEE International Conference on Intelligent Energy and Power Systems IEPS-2016. Kyiv, Ukraine, June 7–11, 2016. Pp. 45-48. DOI: https://doi.org/10.1109/IEPS.2016.7521887

Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Probabilistic Properties of Electrical Characteristics of Capacitor Charge Circuit with Stochastic Active Resistance. Tekhnichna Electrodynamika. 2018. No 6. Pp. 14–17. DOI: https://doi.org/10.15407/techned2018.06.014

Suprunovska N.І. Stochastic Transition Processes in the Circuit of the Discharge Pulses Shaper, Operating for Electric Spark Load. Tekhnichna Electrodynamika. 2019. No 5. Pp. 10–16. (Rus) DOI: https://doi.org/10.15407/techned2019.05.010

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads. Tekhnichna Electrodynamika. 2017. No 2. Pp. 5–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005

Shcherba A.A., Zakharchenko S.N., Suprunovskaya N.I., Shevchenko N.I., Monastirskiy G.E., Peretyatko Yu.V., Petruchenko O.V. Stabilization of modes of electrotechnological systems of obtaining spark-eroded micro and nano powders. Tekhnichna electrodynamica. Tematichnyi vypusk Silova elektronika ta energoefektivnist. 2006. Vol. 1. Pp. 120-123. (Ukr).

Liu Y., Zhu K., Li X., Lin F., Li Y. Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water. Advanced Powder Technology. 2018. Vol. 29. Issue 4. Pp. 863–873. DOI: https://doi.org/10.1016/j.apt.2018.01.003

Perekos A.E., Chernenko V.A., Bunayev S.A., Zalutskiy V.P., Ruzhitskaya T.V., Boitsov O.F., Kakazei G.N. Structure and Magnetic Properties of Highly Dispersed Ni-Mn-Ga Powders Prepared by Spark-Erosion. Journal of Applied Physics. 2012. Vol. 112. Pp. 093909-1 – 093909-7. DOI: https://dx.doi.org/10.1063/1.4764017

Berkowitz A.E., Hansen M.F., Parker F.T., Vecchio K.S., Spada F.E., Lavernia E.J., Rodriguez R. Amorphous soft magnetic particles produced by spark erosion. Journal of Magnetism and Magnetic Materials. 2003. Vol. 254–255. Pp. 1–6. DOI: https://doi.org/10.1016/S0304-8853(02)00932-0

Hong J.I., Parker F.T., Solomon V.C., Madras P., Smith D.J., Berkowitz A.E. Fabrication of spherical particles with mixed amorphous/crystalline nanostructured cores and insulating oxide shells. J. Mater. Res. 2008. Vol. 23. Issue 06. Pp. 1758–1763. DOI: https://doi.org/10.1557/JMR.2008.0199

Berkowitz A.E., Walter J.L. Spark Erosion: A Method for Producing Rapidly Quenched Fine Powders. Journal of Materials Research. 1987. No 2. Pp. 277–288.

Nadutov V.M., Perekos A.O., Kokorin V.V., Konoplyuk S.M., Efimova T.V., Zalutsky V.P. The effect of electrospark dispersion on the magnetic and electric transport properties of the Heusler alloy Cu-Mn-Al. Metallofizyka i Noveishie Tekhnologii. 2014. Vol. 36. № 12. Pp. 1679–1694. (Rus)

Shcherba A.A., Zakharchenko S.N., Lopatko K.G., Aftandilyants E.G. Application of volume electric spark dispersion for production steady to sedimentation hydrosols of biological active metals. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2009. Issue 22. Pp. 74–79. (Rus)

Danilenko N.B., Savel’ev G.G., Yavorovskii N.A., Khaskel’berg M.B., Yurmazova T.A., Shamanskii V.V. Water purification to remove As(V) by electropulse treatment of an active metallic charge. Russian Journal of Applied Chemistry. 2005. Vol. 78. No 10. Pp. 1631–1635.

Kornev Ia., Saprykin F., Lobanova G., Ushakov V., Preis S. Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics. 2018. Vol. 96. Pp. 111–118. DOI: https://doi.org/10.1016/j.elstat.2018.10.008

Zakharchenko S.M. Physical Model of the Granulated Carrent-carrying Medium. Tekhnichna Elektrodynamika. 2012. No 6. Pp. 19–26. (Rus)

Shydlovskaya N.A., Zakharchenko S.N., Cherkasskyi A.P. Nonlinear-parametrical Model of Electrical Resistance of Current-Carrying Granulated Mediums for a Wide Range of Applied Voltage. Tekhnichna Elektrodynamika. 2014. No 6. Pp. 3–17. (Rus)

Suprunovska N.I. Features of Parametric Synthesis of the Circuit of Capacitor Discharge on Electro-spark Load with Nonlinear Resistance. Tekhnichna Elektrodynamika. 2014. No 4. Pp. 20–22. (Rus)

Shcherba A.A., Suprunovskaya N.I., Ivashchenko D.S. Modeling of Nonlinear Resistance of Electro-Spark Load Taking into Account its Changes During Discharge Current Flowing in the Load at Zero Current in it. Tekhnichna Elektrodynamika. 2014. No 5. Pp. 23–25. (Rus)

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Parametric Model of Plasma-erosive Load, Adequate in the Wide Range of Change of Applied Voltage. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 3–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.03.003

Shydlovska N.A., Zakharchenko S.M., Cherkassky O.P. The Analysis of Electromagnetic Processes in Output Circuit of the Generator of Discharge Pulses with Non-linear Model of Plasma-erosive Load at Change Their Parameters in Wide Ranges. Tekhnichna Elektrodynamika. 2016. No 1. Pp. 87–95. (Rus). DOI: https://doi.org/10.15407/techned2016.01.087

Shidlovskiy A.K., Shcherba A.A., Suprunovskaia N.I. Power processes in electrical pulse devices with capacitive energy storages. K.: Interkontinental-Ukraina, 2009. 208 p. (Rus).

Shcherba A.A., Zakharchenko S.N., Suprunovskaya N.I., Shevchenko N.I. The influence of repetition rate of discharge pulses on electrical resistance of current-conducting granular layer during its electric-spark treatment. Tekhnichna Elektrodynamika. 2006. No 2. Pp. 10–14.

Yezepov D. Pearson's consent criterion (Chi-square). URL: https://statanaliz.info/statistica/proverka-gipotez/kriterij-soglasiya-pirsona-khi-kvadrat/ (accessed at 13.05.2020). (Rus)

Kremer N.Sh. Probability Theory and Mathematical Statistics. Moscow: Unity–Dana, 2004. 573 p. (Rus)

Ventzel E.S. Theory of Probability. Moscow: Nauka, 1969. 576 p. (Rus)

Berezhnaya E.V., Berezhnoy V.I. Mathematical Methods of Modeling Economic Systems: Moscow: Finance and Statistics, 2006. 432 p. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 696 | PDF Downloads: 330

Downloads