PHYSICAL AND TECHNICAL-ECONOMIC ASPECTS OF MODERN METHODS OF WATER TREATMENT FOR THERMAL AND NUCLEAR POWER ENGINEERING
ARTICLE_12_PDF (Українська)

Keywords

discharge current
thermal power engineering
energy efficiency
plasma-erosion coagulation
electric-chemical coagulation
water treatment розрядний струм
теплова енергетика
енергоефективність
плазмоерозійна коагуляція
електрохімічна коагуляція
водопідготовка

How to Cite

[1]
Шидловська, Н., Захарченко, С., Захарченко, М., Мазуренко, І. and Куліда, М. 2022. PHYSICAL AND TECHNICAL-ECONOMIC ASPECTS OF MODERN METHODS OF WATER TREATMENT FOR THERMAL AND NUCLEAR POWER ENGINEERING. Tekhnichna Elektrodynamika. 2022, 4 (Jul. 2022), 069. DOI:https://doi.org/10.15407/techned2022.04.069.

Abstract

A critical analysis of modern electric-physical and electric-chemical methods of water treatment is given in the context of the efficiency of treatment surface natural waters for the thermal and nuclear power engineering. Physical aspects of electric-chemical coagulation are considered. Theoretical values of the specific energy of destruction of passivation films on the surface of aluminum and iron electrodes, as well as the minimum voltages required for this, are calculated. The mechanisms of conversion of the energy of discharge pulses in a layer of granules of metal forming a coagulant immersed in water are described. According to the described model of energy conversion processes, the minimum theoretical values of the specific energy of the formation of erosive Al and Fe particles from molten and evaporated metal are calculated. A technique for studying the energy efficiency of plasma-erosion coagulation under laboratory conditions is described, and the results of these studies are presented. The specific energy of purification of 1 m3 of water by electric-chemical and plasma-erosion coagulation was calculated in various modes using Al and Fe as metals forming the coagulant. Based on the analysis of the obtained results, recommendations for ways to improve the energy efficiency of plasma-erosion coagulation modes are given. References 29, figure 1, table 1.

 

https://doi.org/10.15407/techned2022.04.069
ARTICLE_12_PDF (Українська)

References

Ukrenergo. National Power Company. Installed capacity of the IPS of Ukraine values as of 08/2021. URL: https://ua.energy/vstanovlena-potuzhnist-energosystemy-ukrayiny/ (accessed: 07.10.2021). (Ukr)

Hu X, Wang B. Removal of pefloxacin from wastewater by dielectric barrier discharge plasma: Mechanism and degradation pathways. Journal of Environmental Chemical Engineering. 2021. No 9. Article ID 105720. 8 p. DOI: https://doi.org/10.1016/j.jece.2021.105720

Amin M.T., Alazba A.A., Manzoor U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering. Vol. 2014. Article ID 825910. 24 p. DOI: https://doi.org/10.1155/2014/825910

Zhao C.S., Shao N.F., Yang S.T., Ren H., Ge Y.R., Feng P., Dong B.E., Zhao Y. Predicting cyanobacteria bloomoccurrence in lakes and reservoirs before blooms occur. Science of the Total Environment. 2019. Vol. 670. Pp. 837–848. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.161

Giudice D.D., Fang Sh., Scavia D., Davis T.W., Evans M.A., Obenour D.R. Elucidating controls on cyanobacteria bloom timing and intensity via Bayesian mechanistic modeling. Science of the Total Environment. 2021. Vol. 755. Article ID 142487. 12 p. DOI: https://doi.org/10.1016/j.scitotenv.2020.142487

Shidlovskyi A.K., Shcherba A.A., Zakharchenko S.N. Prospects for the use of spark erosion coagulation in water treatment systems of heat networks. Energetika i elektrifikatsiya. 2002. No 12. Pp. 34–40. (Rus)

Zeghioud H., Nguyen-Tri P., Khezami L., Amrane A., Assadi A.A. Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes. Journal of Water Process Engineering. 2020. Vol. 38. Article ID 101664. 13 p. DOI: https://doi.org/10.1016/j.jwpe.2020.101664

Bereka V.O., Kondratenko I.P. Electric Discharge Water Treatment Technologies and Criteria of Expediency of their Use. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2021. Issue 58. Pp. 90–99. (Ukr) DOI: https://doi.org/10.15407/publishing2021.58.090

Hartmann W., Roemheld M., Rohde K.-D., Spiess F.-J. Large Area Pulsed Corona Discharge in Water for Disinfection and Pollution Control. IEEE Transactions on Dielectrics and Electrical Insulation. 2009. Vol. 16. No 4. Pp. 1061–1065. DOI: https://doi.org/10.1109/TDEI.2009.5211855

Kolb J.F., Joshi R.P., Xiao S., Schoenbach K.H. Streamers in water and other dielectric liquids. Journal of Physics D: Applied Physics. 2008. Vol. 41. Article ID 234007. 22 p. DOI: https://doi.org/10.1088/0022-3727/41/23/234007

Bruggeman P., Leys C. Non-thermal plasmas in and in contact with liquids. Journal of Physics D: Applied Physics. 2009. Vol. 42. Article ID 053001. 28 p. DOI: https://doi.org/10.1088/0022-3727/42/5/053001

Bozhko I.V., Serdyuk Y.V. Determination of Energy of a Pulsed Dielectric Barrier Discharge and Method for Increasing Its Efficiency. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue. 12. Pp. 3064–3069. DOI: https://doi.org/10.1109/TPS.2017.2760888

Lukes P., Clupek M., Babicky V., Sunka P. Pulsed Electrical Discharge in Water Generated Using Porous-Ceramic-Coated Electrodes. IEEE Transactions on Plasma Science. 2008. Vol. 36. No 4. Pp. 1146–1147. DOI: https://doi.org/10.1109/TPS.2008.920945

Yavorovskiy N.A., Kornev Ya.I., Preis S.V., Pelchtsman S.S., Haskelberg M.B., Chen B.N. Active oxidizing particles in water-air flow. Izvestiia Tomskoho Politekhnicheskoho Instituta. 2006. Vol. 309. No 2. Pp. 108–113 (Rus).

Shcherba A.A., Zakharchenko S.N., Suprunovskaya N.I., Shevchenko N.I., Yatsyuk S.A., Solomentseva I.M. Improving the Power Efficiency of Electrophysical Methods of Wastewater Treatment from Organic Pollution. Tekhnichna electrodynamica. Tematichnyi vypusk Silova elektronika ta energoefektivnist. 2007. Vol. 5. Pp. 75–79. (Rus)

Locke B.R., Sato M., Sunka P., Hoffman M.R., Chang J.-S. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Industrial & Engineering Chemistry Research. 2006. Vol. 45. Pp. 882–905. DOI: https://doi.org/10.1021/ie050981u

Panorel I., Preis S., Kornev Ia., Hatakka H., Louhi-Kultanen M. Oxidation of aqueous pharmaceuticals by pulsed corona discharge. Environmental Technology. 2013. Vol. 34. No 7. Pp. 923–930. DOI: https://doi.org/10.1080/09593330.2012.722691

Larin B.M., Bushuev E.N., Larin A.B., Karpychev E.A., Zhadan A.V. Improvement of Water Treatment at Thermal Power Plants. Thermal Engineering. 2015. Vol. 62. No 4. Pp. 286–292. DOI: https://doi.org/10.1134/S0040601515020056

Geise G.M., Lee H.S., Miller D.J., Freeman B.D., McGrath J.E., Paul D.R. Water purification by membranes: The role of polymer science. Journal of Polymer Science: Part B: Polymer Physics. 2010. Vol. 48. Pp. 1685–1718. DOI: https://doi.org/10.1002/polb.22037

CHP-6 SOP Kiev CHPP PJSC KIEVENERGO. URL: https://ecosoft.ua/customer_story/tets-6/ (accessed: 19.10.2021). (Rus)

Karataev O.R., Shamsutdinova Z.R., Khafizov I.I. Wastewater treatment by electrochemical methods. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015. Vol. 18. No 33. Pp. 21–23. (Rus)

Zakharchenko S.M., Shydlovska N.A., Perekos A.O., Zakharchenko M.F. Power Efficiency of Electrophysical Methods of Dispersion and Electrochemical Dissolution of Several Metals. Metallofizika i Noveishie Tekhnologii. 2021. Vol. 43. No 4. Pp. 465–487. (Ukr) DOI: https://doi.org/10.15407/mfint.43.04.0465

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads. Tekhnichna Electrodynamika. 2017. No 2. Pp. 5–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005

Zakharchenko S.M. Increase of Efficiency of Obtaining of Ultradispersive Metals Particles by Volume Electroerosive Dispersion their Granules in a Liquid. Tekhnichna Elektrodynamika. 2013. No 1. Pp. 16–23. (Rus)

Goncharuk V.V., Shcherba A.A., Zakharchenko S.N., Savluk O.S., Potapchenko N.G., Kosinova V.N. Disinfectant action of the volume electrospark discharges in water. Khimiia i tehnologiia vody. 1999. Vol. 21. No 3. Pp. 328 – 336. (Rus)

Namytokov K.K. Electroerosive phenomenon. Moskva: Energiya, 1978. 456 p. (Rus.)

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Comparison of the Smoothing Efficiency of Signals of Voltage on the Plasma-erosive Load and its Current by Multi-Iterative Filtration Methods. Tekhnichna Elektrodynamika. 2017. No 4. Pp. 3–13. (Ukr) DOI: https://doi.org/10.15407/techned2017.04.003

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Parametric Model of Resistance of Plasma-erosive Load, Adequate in the Wide Range of Change of Applied Voltage. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 3–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.03.003

Shcherba A.A., Suprunovska N.І., Shcherba M.A. Features of the Formation of Multi-Channel Pulse Currents and Fast-Migrating Electric Sparks in the Layer of Current-Conducting Granules of Electric-Discharge Installations. Tekhnichna Elektrodynamika. 2022. No 2. Pp. 3–11. DOI: https://doi.org/10.15407/techned2022.02.003

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 874 | PDF Downloads: 435

Downloads