MULTIFACTOR MODELING AND ANALYSIS OF ELECTRICAL LOAD OF THE POWER SYSTEM USING THE DATA OF LONG-TERM PREHISTORY
ARTICLE_12_PDF (Українська)

Keywords

power system
electrical load
mathematical modeling
short-term forecasting
long-term prehistory
exogenous factors енергосистема
електричне навантаження
математичне моделювання
короткострокове прогнозування
довготривала передісторія
зовнішні фактори

How to Cite

[1]
Черненко, П., Мартинюк, О., Заславський, А. and Мірошник, В. 2018. MULTIFACTOR MODELING AND ANALYSIS OF ELECTRICAL LOAD OF THE POWER SYSTEM USING THE DATA OF LONG-TERM PREHISTORY. Tekhnichna Elektrodynamika. 1 (Jan. 2018), 087. DOI:https://doi.org/10.15407/techned2018.01.087.

Abstract

The issue of using a long-term prehistory to improve the accuracy of short-term forecasting the total electric load of the power system is considered. Information on hourly loads of regional energy systems and the main factors that affect them is stored in the developed database. The special control program can display information in graphically. Using the program for processing this information, a mathematical model of the electric load is constructed and changes in its characteristics over time are investigated under the influence of external factors. In order to test the effectiveness of the approach that involves the use of individual models trained in selected seasons on a sample of long-term pre-history, comparative prediction of hourly values of the total electric load for the day ahead was performed. Time intervals in the annual period that corresponds to the different characters of the effect of air temperature on the electric load are allocated. The proposed method, which consists in constructing independent mathematical models of electric load on the allocated time intervals with the use of long-term data. It improves the accuracy of modeling the influence of exogenous factors on the electric load of power system. The approach to modeling and forecasting of electric load of irregular days using the data of long-term prehistory is given.  References 8, figures 3, table 2.

https://doi.org/10.15407/techned2018.01.087
ARTICLE_12_PDF (Українська)

References

Kotsar О.V., Rasko Yu.О., Halabitskyi P. Increasing the reliability of forecasting the load of end-users in the BSMBM. Enerhetyka: ekonomika, tekhnolohii, ekolohiia. 2015. No 2(40). Pp. 43–52. (Ukr)

Makoklyiev B., Antonov A., Ushchapovskii K.V., Grabchak R.V. Forecasting the electric load of united power system of Ukraine. Elektricheskie seti i sistemy. 2010. No 4. Pp. 4–12. (Rus)

Chernenko P. Identification of parameters, modeling and multi-level interconnected forecasting of electrical loads of the united power system. Tekhnichna Elektrodynamika. Tematychnyi vypusk Problemy suchasnoi elektrotekhniky. 2010. Vol. 3. Pp. 57–64. (Rus)

Chernenko P.O., Martyniuk O.V., Zaslavsky A.I., Denesivich K.B. Improving the efficiency of planning united power system using the program complex of medium-term forecasting. Elektricheskie seti i sistemy. 2009. No 5. Pp. 21–35. (Rus)

Farmer E.D., Potton M.J. Development of on-line load prediction techniques with results from trials in the south-western region of the CFGB. Proc. IEE. 1968. Vol. 115. Pp. 1549–1558.

Galiana F., Handshin E., Fiechter A. Identification of stochastic electric load models from physical data. IEEE Trans. AC. 1974. Vol. 19. No 6. Pp. 887–893.

Gupta P.C., Yamada K. Adaptive short – term forecasting of hourly loads using weather information. IEEE Trans. Power Appar. and Syst. 1972. Vol. 91. No 5. Pp. 2085–2094.

Protasiewicz J. and Czczepaniak P.S. Neural Models of Demands for Electricity. Prediction and Risk Assessment. Electrical Review. 2012. Vol. 88. No 6. Pp. 272–279.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 143 | PDF Downloads: 16

Downloads