MODELING OF ELECTRIC FIELD IN CABLE TERMINATION WITH STRESS CONTROL TUBE
ARTICLE_1_PDF (Українська)

Keywords

cable termination
stress control tube
defects of insulation surface
improper tube shrinkage
computer modeling кабельная муфта
трубка выравнивания поля
дефекты поверхности изоляции и установки трубки
компьютерное моделирование

How to Cite

[1]
Kucheriava , I. 2016. MODELING OF ELECTRIC FIELD IN CABLE TERMINATION WITH STRESS CONTROL TUBE. Tekhnichna Elektrodynamika. 6 (Oct. 2016), 003. DOI:https://doi.org/10.15407/techned2016.06.003.

Abstract

The electric field distribution in the end termination of medium-voltage cross-linked polyethylene insulated power cable is studied by computer modeling. The stress control tube is used in the cable termination to reduce field nonuniformity. The dependence of conductivity of the cable insulation on electric intensity and the tube length in axial direction are taken into account. The conductivity and dielectric permittivity of tube material are varied. The possible defects owing to insulation surface roughness and air bubbles under stress control tube are considered. The practical relevance of attained results is associated with selection of the length and material of field-grading tube and with ensuring of electric strength of cable insulation at availability of defects on its external surface. References 12, figures 4, table 1.

https://doi.org/10.15407/techned2016.06.003
ARTICLE_1_PDF (Українська)

References

Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov S.V. Foundations of the circuit theory. – Moskva: Energoatomizdat, 1989. – 528 p. (Rus)

"Progress" cable terminations. Advanced designs for cable networks // Kabel-news. – 2009. – No 11. – Pp. 34–36. (Rus)

Kuchinskii G.S. Partial discharges in high-voltage constructions. – Leningrad: Energiia, 1979. – 224 p. (Rus)

Makarov Е.F. The handbook on 0.4–35 kV and 110–1150 kV power networks. Vol. 3. – Moskva: Papirus-Pro, 2004. – 688 p. (Rus)

Medium- and high-voltage power cables with cross-linked polyethylene insulation. – PJSC Zavod "Yuzhkabel". – Kharkov, Ukraine. – 56 p. (Rus)

Boggs S.A. Semi-empirical high-field conduction model for polyethylene and implications thereof // IEEE Trans. on Dielectrics and Electrical Insulation. – 1995. – Vol. 2. – Is. 1. – Pp. 97–106.

Comsol multiphysics modeling and simulation software – http://www.comsol.com/

Dissado L.A., Fothergill J.C. Electrical degradation and breakdown in polymers. – London: Peter Peregrinus Ltd. for IEE, 1992. – 601 p.

Hampton N. HV and EHV cable system aging and testing issues. Chapter 3. – University System of Georgia, Institute of Technology NEETRAC – National Electric Energy Testing, Research and Application Center. – Georgia Tech Research Corporation, February 2016. – 19 p. – http://www.cdfi.gatech.edu/publications/3-HV-Issues-7_with-Copyright.pdf

Kucheriava I.M. Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer // Tekhnichna Elektrodynamika. – 2016. – No 3. – Pp. 12–17.

Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field // Proc. of the 5-th European Thermal-Sciences Conference. – The Netherlands, 18–22 May, 2008. – 8 p. Available at: http://citeseerx.ist.psu.edu /viewdoc/download?doi=10.1.1.491.3890&rep=rep1&type=pdf (accessed 28.03.2016)

Strobl R., Haverkamp W., Malin G., Fitzgerald F. Evolution of stress control systems in medium voltage cable accessories // Proc. of Transmission and Distribution Conference and Exposition, IEEE/PES. – 2001. – Vol. 2. – Pp. 843–848.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 263 | PDF Downloads: 20

Downloads

Download data is not yet available.