APPLICATION OF PHASE CURRENT LOOPS FOR MODELING THE HARMONIC MAGNETIC FIELD OF A MAGNETOELECTRIC GENERATOR
ARTICLE_5_PDF (Українська)

Keywords

mathematical model
synchronous generator
permanent magnets
electromagnetic field математична модель
синхронний генератор
постійні магніти
електромагнітне поле

How to Cite

[1]
Kryshchuk , R. 2024. APPLICATION OF PHASE CURRENT LOOPS FOR MODELING THE HARMONIC MAGNETIC FIELD OF A MAGNETOELECTRIC GENERATOR. Tekhnichna Elektrodynamika. 5 (Aug. 2024), 030. DOI:https://doi.org/10.15407/techned2024.05.030.

Abstract

The model of electromagnetic field of a magnetoelectric generator with a smooth cylindrical rotor and surface-mounted permanent magnets is investigated. Permanent magnets are interpreted using complex amplitudes of a system of current loops with harmonic currents. The aim of the study is to develop a mathematical model for calculating the harmonic magnetic field of a magnetoelectric generator with permanent magnets by replacing the permanent magnets with phase current loops with complex current amplitudes and to investigate its adequacy. Three variations of model representation of permanent magnets placed on the surface of the magnetic core are utilized. Depending on the model representation of permanent magnets, two dynamic generator models and two harmonic models have been developed. For each model, equations of the electromagnetic field are written. An example of a three-phase scheme of current loops of the rotor for modeling the electromagnetic field of the magnetoelectric generator with complex amplitudes of currents is presented. Comparison of the magnetic field induction, current, voltage, and electromagnetic torque is performed with three variations of magnet width relative to the pole pitch. References 14, figures 5, table 1.

https://doi.org/10.15407/techned2024.05.030
ARTICLE_5_PDF (Українська)

References

Kondratenko I.P., Kryshchuk R.S. Mathematical model of a magnetoelectric machine. Tekhnichna Elektrody-namika. 2024. No 2. Pp. 52-61 URL: https://doi.org/10.15407/techned2024.02.052 (Ukr)

Rasmussen K.F., Davies J.H., Miller T.J.E., McGelp M.I., Olaru M. Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets. IEEE Transactions on Industry Applications. 2000. Vol. 36. No 6. Pp. 1547-1554. DOI: https://doi.org/10.1109/28.887205.

COMSOL Multiphysics. Theory for the AC/DC Module. URL: https://doc.comsol.com/6.1/docserver/#!/com.comsol.help.acdc/acdc_ug_theory.05.01.html (available at 27.05.2024).

Zhyltsov A.V., Lyktei V.V. Magnetic field calculation of brushless direct current motor with smooth stator by secondary sources method. Tekhnichna elektrodynamika. 2018. No 5. Pp. 7-10. DOI: https://doi.org/10.15407/techned2018.05.007.

Kondratenko I.P., Kryshchuk R.S., Raschepkin A.P. Electromagnetic processes in the axial arc-stator induction machines with double layer winding. Tekhnichna elektrodynamika. 2015. No 6. Pp. 34-40. (Ukr)

Vyshtak T.V., Karlov O.N., Kondratenko I.P., Raschepkin A.P. Magnetic field of winding stator currents of a synchronous motor with hollow rotor. Tekhnichna elektrodynamika. 2013. No 5. Pp. 41-46. (Rus)

Zhiltsov A., Sorokin D. The calculation of the magnetic field in the working area of the linear motor with permanent magnets. 16th International Conference on Computational Problems of Electrical Engineering (CPEE), Lviv, Ukraine, 02-05 September, 2015. Pp. 252-254. DOI: https://doi.org/10.1109/CPEE.2015.7333390.

Voldyek A.I. Induction magnetohydrodynamic machines with liquid-metal working fluid. Leningrad: Energiya, 1970. 272p. (Rus)

Karpov Yu.O., Vedmіtsky Yu.G., Kukharchuk V.V. Theoretical foundations of electrical engineering. Electromagnetic field. Vinnytsia: UNIVERUM-Vinnytsia, 2008. 407 p. (Ukr)

Sokolov S.V., Pysarenko L.D., Zhurba V.O. Theory of Electromagnetic Fields and Fundamentals of Microwave Engineering. Sumy: Sumy State University, 2011. 394 p. (Ukr)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Tekhnichna Elektrodynamika

Abstract views: 259 | PDF Downloads: 104

Downloads

Download data is not yet available.