STABILIZATION OF THE ELECTROMAGNETIC LEVITATION SYSTEM BY METHODS OF MODAL CONTROL AND STATE OBSERVATION
ARTICLE_6_PDF (Українська)

Keywords

DC electromagnet
structural instability
electromagnetic suspension
levitation
stabilization
modal control
speed observer
statics
dynamics
research
modeling електромагніт постійного струму
структурна нестійкість
магнітний підвіс
стабілізація
модальне керування
спостерігач швидкості
статика
динаміка
дослідження
моделювання

How to Cite

[1]
Теряєв, В., Желінський, М., Приймак, Б. and Зайченко, О. 2025. STABILIZATION OF THE ELECTROMAGNETIC LEVITATION SYSTEM BY METHODS OF MODAL CONTROL AND STATE OBSERVATION. Tekhnichna Elektrodynamika. 4 (Jun. 2025), 062. DOI:https://doi.org/10.15407/techned2025.04.062.

Abstract

A refined mathematical model of a direct current electromagnet has been developed, which takes into account the invariance of the direction and the quadratic dependence of the force on the magnetic flux and the gap. A simulation model of an electromagnet was built in the Matlab package. The structural instability of an unregulated electromagnetic suspension system is shown. A modal regulator that provides stability and specified quality indicators of static and dynamic modes has been synthesized. To simplify the technical implementation, a speed observer was developed. Comparative modeling of an electromagnetic suspension system was carried out when testing the reference influence and disturbances in force and working gap. The obtained research results confirm the developed model's performance and suitability for refined modeling and synthesis of electromagnetic suspension control laws, as well as evidence of the possibility of applying modal control and state observation methods for structurally unstable objects. References 20, figures 12, table 1.

https://doi.org/10.15407/techned2025.04.062
ARTICLE_6_PDF (Українська)

References

Han H.-S., Kim D.-S. Magnetic Levitation: Maglev Technology and Applications. Springer Tracts on Transportation and Traffic. Dordrecht: Springer Netherlands, 2016. 247 p. DOI: https://doi.org/10.1007/978-94-017-7524-3.

Livingston J.D. Rising Force: The Magic of Magnetic Levitation. Cumberland: Harvard University Press, 2011. 288 p. DOI: https://doi.org/10.4159/harvard.9780674061095

Sangster A.J. Fundamentals of Electromagnetic Levitation: Engineering sustainability through efficiency. London: The Institution of Engineering and Technology, 2012. 248 p. DOI: https://doi.org/10.1049/PBCS024E

Karabacak Y. Application of PID and self-tuning fuzzy PID control methods in the control of non-linear magnetic levitation system. Journal of Innovative Enginttring and Natural Science. 2024. Vol. 4. No. 2. Pp. 514-529. DOI: https://doi.org/10.61112/jiens.1420710.

Sinha P.K. Electromagnetic suspension: dynamics and control. London, U.K: Peter Peregrinus Ltd, 1987. 304 p.

Charara A., De Miras J., Caron B. Nonlinear control of a magnetic levitation system without premagnetization. IEEE Transactions on Control Systems Technology. 1996. Vol. 4. No 5. Pp. 513-523. DOI: https://doi.org/10.1109/87.531918

Hurley W.G., Wolfle W.H. Electromagnetic design of a magnetic suspension system. IEEE Transactions on Education. May 1997. Vol. 40. No 2. Pp. 124-130. DOI: https://doi.org/10.1109/13.572325

Oliveira V.A., Costa E.F., Vargas J.B. Digital implementation of a magnetic suspension control system for laboratory experiments. IEEE Transactions on Education. Nov 1999. Vol. 42. No 4. Pp. 315-322. DOI: https://doi.org/10.1109/13.804538

El Hajjaji A., Ouladsine M. Modeling and nonlinear control of magnetic levitation systems. IEEE Transactions on Industrial Electronics, Aug. 2001. Vol. 48. No 4. Pp.831-838. DOI: https://doi.org/10.1109/41.937416

Popovych N.G., Gavriliuk V.A., Teriaiev V.I., Redko A.P., Avrimskii V.D. Mathematical model of the electromagnet of the electromagnetic suspension system. Izvestiia vysshyh uchebnyh pfvedenii. Elektrotekhnika. 1983. No 10. Pp. 116-117. (Rus)

Teriaiev V.I., Burlaka O.P. Mathematical model of an executive electromagnet for magnetic suspension systems. Electromechanical and energy systems, methods of modeling and optimization. Collection of scientific papers of the XI International scientific and technical conference of young scientists and specialists in the city of Kremenchuk. 9-11 April 2013. Kremenchuk: KRNU, 2013. Pp. 264-265. (Ukr)

Pryymak B.I. Theory of automatic control. Linear systems. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2023. 310 p. (Ukr)

Tolochko O.I., Ryzhkov O.M. Synthesis and analysis of the modal control system of the crane mechanism of progressive movement taking into account the operation of the lifting mechanism. Tekhnichna Elektrodynamika. 2018. No 4. Pp. 131-134. DOI: https://doi.org/10.15407/techned2018.04.131. (Ukr)

Tolochko O.I. Analysis and synthesis of electromechanical systems with state monitors: autoref. thesis for obtaining sciences. doctor's degree technical sciences: spec. 05.09.03 Electrotechnical complexes and systems, Kharkiv, 2004. 31 p. (Ukr)

Ladanyuk A.P., Lutska N.M., Kishenko V.D., Vlasenko L.O., Ivashchuk V.V. Methods of modern control theory: a textbook. Kyiv: Lira-K Publishing House, 2018. 368 p. (Ukr)

Motakabber S. M. A., Alam A. Z., Kamal K. I. B. Modelling and Control of a Magnetic Levitation System. Asian journal of electrical and electronic engineering. 2024. Vol. 4. No 1. Pp. 9-16. DOI: https://doi.org/10.69955/ajoeee.2024.v4i1.55

Teriaiev V.I. Stabilization of the electromagnetic suspension system using an accelerometer. Electromechanical and energy-saving systems. Quarterly scientific and industrial magazine. Kremenchuk: KRNU, 2014. No 4/2014 (28). Pp. 71-78. (Ukr)

Teriaiev V.I. Position stabilization system and active vibration protection of an object in space based on an electromagnetic suspension. Patent UA No 120636, 2017. (Ukr)

Teriaiev V.I. Two-channel system of high-precision control of the position of the object in space and its active vibration protection based on an electromagnetic suspension. Patent UA No 121576, 2017. (Ukr)

Shiao Y.S. Design and Implementation of a Controller for a Magnetic Levitation System. Proc. Natl. Sci. Counc. 2001. Iss. 11. No 2. Pp. 88-94.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array

Abstract views: 134 | PDF Downloads: 26

Downloads