Abstract
Based on the research, the article presents three algorithms that allow to select from the overall electrical load (OEL) of the power system technological and temperature components in each hour of the daily schedule, which provides greater accuracy of short-term forecasting (STF) OEL of the power system. Calculations by three algorithms were performed according to Kyivenerho. The analysis of reading temperature sensors on four sources from the point of view of possibility of their application at STF is carried out. References 6, figures 3, tables 3.
References
Bunn D.H., Farmer. E.D. Comparative models for electrical load forecasting. New York: Wiley, 1985. 232 p.
Makoklyuev B.I. Uchet vliyaniya meteorologicheskih faktorov pri prognozirovanii elektropotrebleniya ener-goobedinenij. Energetik. 2004. No 6. Pp. 15-16. (Rus)
Zueva V. N. Regressionnye metody prognozirovaniya grafika nagruzki elektroobo-rudovaniya. Nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2017. No 126 (02). Pp. 1-12. URL: http://ej.kubagro.ru/2017/02/pdf/08.pdf (accessed at 31.07.2020) (Rus)
Chernenko P. O., Martinyuk O.V., Dekompoziciya dobovogo grafika elektrichnogo na-vantazhennya ener-gosistemi ta modelyuvannya jogo skladovih pid chas korotkostrokovogo prognozu-vannya. Visnyk Vinnytskoho politehnichnoho institutu. 2017. No 6. Pp. 86-94. URL: http://nbuv.gov.ua/UJRN/vvpi_2017_6_15. (accessed at 30.07.2020) (Ukr)
Wei Zhao, Tao-tao Dai, Lian-cheng Wang, Ke Lu, Nan Chen. Short-term Load Forecasting Considering Mete-orological Factors and Electric Vehicles. IOP Conference Series: Materials Science and Engineering. Singapore, 14 – 16 September, 2018. Vol. 439. Part 1. Pp. 941-946.
List of national capitals. URL: https://en.wikipedia.org/wiki/List_of_national_capitals (accessed at 30.07.2020)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Array