VIRIAL THEOREM LIMITATIONS FOR THE TOROIDAL MAGNETIC ENERGY STORAGE CAUSED BY THE LOCATION OF SUPPORT STRUCTURE ELEMENTS AND THEIR MECHANICAL PROPERTIES
ARTICLE_1 PDF

Keywords

toroidal magnetic energy storage
virial theorem
structure under compression
support structure volume тороїдальні індуктивні накопичувачі енергії
теорема віріала
стискання опорних елементів
об’єм опорних конструкцій

How to Cite

[1]
Vasetsky, Y. 2022. VIRIAL THEOREM LIMITATIONS FOR THE TOROIDAL MAGNETIC ENERGY STORAGE CAUSED BY THE LOCATION OF SUPPORT STRUCTURE ELEMENTS AND THEIR MECHANICAL PROPERTIES. Tekhnichna Elektrodynamika. 2022, 1 (Jan. 2022), 003. DOI:https://doi.org/10.15407/techned2022.01.003.

Abstract

Based on the virial theorem, the influence of the following factors to characteristics of mechanical support systems of toroidal magnetic energy storage is considered: the configuration of the coils, the support system elements location under compressive forces, the mechanical properties of the material, the distribution of the cross-sectional areas of the support rings and the corresponding distribution of radial forces. It is established that the volume of structure requirement depends only on the radii from which the coils transmit forces to the support rings. The found general relation, in contrast to the existing ones, establishes a relationship between all the parameters that determine the volume of the support structures. The characteristics of support systems are analyzed both for identical mechanical stresses and for identical mechanical properties of all support elements. The characteristics for specific examples of toroidal systems with circular coils are found. It is shown that systems with support elements in compression located on the side of the vertical axis of the torus have a significantly smaller volume of structure compared to other locations. The influence of the relative radial size of the torus cross-section and the distribution of the cross-sectional areas of the support rings on the structure requirement is analyzed. The relationship between dimensionless characteristics that determine the volume of elements subjected to mechanical stresses of compression and tension is noted. References 37, figures 8, table 1.

https://doi.org/10.15407/techned2022.01.003
ARTICLE_1 PDF

References

ITER Physics Basis. Nuclear Fusion. 1999. Vol. 39. No 12.

Duchateau J.L., Journeaux J.Y., Gravil B. Tore Supra Superconducting Toroidal Magnetic Field System. Fusion Science and Technology. 2009. Vol. 56. No 3. Pp. 1092-1123. DOI: https://doi.org/10.13182/FST09-A9170

Menard J.E., Bromberg L., Brown T. et al. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator. Nuclear Fusion, Vol. 51. No 10. 103014. DOI: https://doi.org/10.1088/0029-5515/51/10/103014

Ribeiro P.F.; Johnson B.K.; Crow M.L.; Arsoy A.; Liu Y. Energy storage systems for advanced power applications. Proceeding IEEE. 2001. Vol. 89. Pp. 1744–1756. DOI: https://doi.org/10.1109/5.975900.

Mohamad F., Teh J., Lai C-M., Chen L-R. Development of Energy Storage Systems for Power Network Reliability: A Review. Energies. 2018. Vol. 11. 2278. DOI: https://doi.org/10.3390/en11092278.

Devotta J.B.X., Rabbani M.G. Application of superconducting magnetic energy storage unit in multi-machine power systems. Energy Conversion & Management. 2000. Vol. 41. Pp. 493-504. DOI: https://doi.org/10.1016/S0196-8904(99)00100-4.

Said S.M., Aly M., Abdel-Akher M. Application of Superconducting Magnetic Energy Storage (SMES) for Voltage Sag/Swell Supression in Distribution System with Wind Power Penetration. IEEE 16th International Conference on Harmonics and Quality of Power (ICHQP). Bucharest, Romania, May 25-28, 2014. DOI: https://doi.org/10.1109/ICHQP.2014.6842877

Borgard L. Voltage stabilization in network used energy storage. Transm.&Distr.World. 1999. No 9. Pp. 203-208.

Duangkamol K., Mitani Y., Ise T. Tsuji K. Experimental study on power system stabilizing control scheme for the SMES with solid-state phase shifter (Super SMES), IEEE Trans. an Applied Superconductivity. 1999. Vol. 9. No 2. Pp. 326-329. DOI: https://doi.org/10.1109/77.783301

Zhou X., Chen X.Y., Jin J.X. Development of SMES Technology and Its Applications in Power Grid. IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. Sydney, Australia, December 14-16, 2011. Pp. 260-269. DOI: https://doi.org/10.1109/ASEMD.2011.6145115

Avramenko V.M., Aristov Yu.V., Vasetsky Yu.M., Mazurenko I.L., Cherenenko P.O. Some areas of efficient use of superconducting magnetic energy storage (SMES) in the power systems of Ukraine. Tekhnichna elektrodynamika. Special issue. Problems of present-day elektrotechnics. Part. 3. 2008. Pp. 43-48. (Ukr)

Yakimets I.V., Dmitrieva G.A. Directional regulation of the active power of a superconducting magnetic energy storage. Elektrichestvo. 2001. No 8. Pp. 1-9. (Rus)

Boeing H.J., Hauer J.F. Commissioning tests of the Bonneville power administration 30 MJ Superconducting magnetic energy storage unit. IEEE Trans. Power Apparatus Systems. 1985. Vol. 104. Issue 2. Pp. 302-312. DOI: https://doi.org/10.1109/TPAS.1985.319044

Ali M. H., Wu B., Dougal R. A. An Overview of SMES Applications in Power and Energy Systems. IEEE Transactions on Sustainable Energy. 2010. Vol. 1. No 1. Pp. 38-47. DOI: https://doi.org/10.1109/TSTE.2010.2044901

Vasetsky Yu.M., Mazurenko I. L, Pavlyuk A. V. Compensation of nonregular oscillations of the active power overflows through the transmission line with the help of superconducting magnetic energy storage. Elektrichestvo. 2014. No 2. Pp. 10-17. eLIBRARY ID: 21094673. ( Rus).

Nomura S., Shintomi T., Akita Fellow S., Tanzo Nitta T., Shimada R., Meguro S. Technical and Cost Evaluation on SMES for Electric Power Compensation. IEEE Trans. Applied Superconductivity. 2010. No 20. Pp. 1373-1378. DOI: https://doi.org/10.1109/TASC.2009.2039745

Hamajima T., Tsuda M., Miyagi D. et al. Advanced superconducting power conditioning system with SMES for effective use of renewable energy. Physics Procedia. 2012. Vol. 27. Pp. 396 – 399. DOI: https://doi.org/10.1016/j.phpro.2012.03.494

Jin J.X, Chen X.Y. Study on the SMES Application Solutions for Smart Grid. Physics Procedia. 2012. Vol. 36. Pp. 902 – 907. DOI: https://doi.org/10.1016/j.phpro.2012.06.227

Brechna H. Superconducting magnet systems. Berlin, New York: Springer, 1973. 590 p.

Vasetsky Yu. Asymptotic methods for solving electrodynamics problems in systems with bulky curvilinear conductors. Kyiv: Naukova dumka, 2010. 271 p. (Rus)

Volkov E.D., Suprunenko V.A., Shishkin A.A. Stellarator. Kiev: Naukova dumka, 1983. 312 p. (Rus)

Matsukawa T., Nakamura H., Nomura S., Sato Y., Tsuji-Iio S., Shimada R.. Conceptual Design of SMES System Equipped for IPP Plant. IEEE Transactions on Applied Superconductivity. 2000. Vol. 10. No 1. Pp. 788-791. DOI: https://doi.org/10.1109/77.828349

Nomura S., Chikaraichi H., Tsutsui H., Shimada R. Feasibility Study on Large Scale SMES for Daily Load Leveling Using Force-Balanced Helical Coils. IEEE Transactions on Applied Superconductivity. 2013. Vol. 23. Issue 3. 5700904. DOI: https://doi.org/10.1109/TASC.2012.2237494

Fabbri M., Ajiki D., Negrini F., Shimada R., Tsutsui H., Venturi F. Tilted toroidal coils for superconducting magnetic energy storage systems. IEEE Transactions on Magnetics. 2003. Vol. 39. Issue 6. Pp. 3546 – 3550. DOI: https://doi.org/10.1109/TMAG.2003.819483

Vasetsky Yu., Georgiyevskiy A., Ostrow S., Rotachov Yu. Toroidal magnetic systems with tilted coils for superconducting magnetic energy storage (SMES). Tekhnichna elektrodynamika. Special issue. Problems of present-day elektrotechnics. Part. 2. 2004. Pp. 3-6. (Ukr).

Vasetsky Yu., Mazurenko I., Aristov Yu. Thin Toroidal Superconducting Magnetic Energy Storage (SMES) with Tilted Coils: Dimension and Mass Parameters, Stray Magnetic Fields. Przeglad Elektrotechniczny (Electrical Review). 2009. No 4. Pp. 95-97. URL: http://pe.org.pl/issue.php?lang=1&num=04/2009

Thome R.J., Tarrh J.M. MHD and Fusion Magnets. Field and Force Design Concepts. New York: A Wiley-Interscience Publication, 1982. 316 p.

Leytes L.V. Coreless toroidal reactor for power systems. Elektrichestvo. 1960. No 11. Pp. 76-81. (Rus)

Larionov B.A., Spevakova F.M., Stolov A.M., Azizov E.A. Problems of accumulation and conversion of electromagnetic energy in pulse power systems with magnetic energy storage. Physics and technique of powerful impulse systems. Moskva: Energoatomizdat, 1987. Pp. 66-104. (Rus)

Georgiyevskiy A. Ostrow S., Vasetsky Y. Superconducting Magnetic Energy Storage (SMES) Systems with Spoke Support Structure Placed Inside a Torus. Proceedings of the VII Intern. Workshop: Computation Problems of Electrical Engineering. Jazleevets, 2003. Pp. 24−27.

Mazurenko I., Pavlyuk A., Vasetsky Y. Parameters of superconducting magnets with racetrack-shaped coils and support structure placed inside torus. Przeglad Elektrotechniczny (Electrical Review). 2012. Vol. 88. No 3a. Pp. 67−69. URL: http://pe.org.pl/articles/2012/3a/23.pdf

Eyssa Y., Boom R. Considerations of a large force balanced magnetic energy storage system. IEEE Transactions on Magnetics. 1981. Vol. 17. Issue 1. Pp. 460-462. DOI: https://doi.org/ 10.1109/TMAG.1981.1061108

Levy R.H. Author's Reply to Willinski's Comment on Radiation Shielding of Space Vehicles by Means of Superconducting Coils. AVCO Research Laboratory Journal. June, 1962.

Moon F.C. The virial theorem and scaling laws for superconducting magnet systems. Journal of Applied Physics. 1982. Vol. 53. Issue 12. Pp. 9112-9121. DOI: https://doi.org/10.1063/1.330423

Nomura S., Tsutsui H. Structural Limitations of Energy Storage Systems Based on the Virial Theorem. IEEE Transactions on Applied Superconductivity. 2017. Vol. 27. Issue 4. 5700106. DOI: https://doi.org/10.1109/TASC.2017.2652858.

Polivanov K.M. Theoretical bases of electrical engineers. Vol. 3. Theory of Electromagnetic Field. Moskva-Leningrad: Energiia, 1965. 352 p. (Rus)

Vasetsky Y.M. Mazurenko I.L, Pavlyuk A.V. Comparison of superconducting magnets with mechanical support elements placed inside torus. Tekhnichna electrodynamika. 2013. No 4. Pp. 13-21.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 216 | PDF Downloads: 96

Downloads