SIMULATION OF THE ELECTRIC POWER GENERATION SYSTEM ON THE BASIS OF DFIG WITH ACTIVE FILTRING CAPABILITITES AND REACTIVE POWER COMPENSATION
ARTICLE_11_PDF (Українська)

Keywords

vector control
doubly-fed induction machine
active filtration
reactive power векторне керування
машина подвійного живлення
активна фільтрація
реактивна потужність

How to Cite

[1]
Mykhalskyi, V. et al. 2018. SIMULATION OF THE ELECTRIC POWER GENERATION SYSTEM ON THE BASIS OF DFIG WITH ACTIVE FILTRING CAPABILITITES AND REACTIVE POWER COMPENSATION. Tekhnichna Elektrodynamika. 5 (Aug. 2018), 052. DOI:https://doi.org/10.15407/techned2018.05.052.

Abstract

New approaches to reactive power compensation and simultaneous active filtration in the doubly-fed induction machine (DFIM) are considered. The proposed control algorithms are applied to the DFIM with a stator directly connected to the network, and the rotor connected to the network through a converter with a bi-directional energy flow. The main algorithm for controlling the DFIM is primarily aimed at obtaining maximum power at a variable wind speed. Depending on the power of the converter, the power quality can be improved by compensating the reactive power and harmonics of the current of the network. The control of the rotor inverter is aimed at solving the problems of producing the maximum active power captured by the wind and improving the quality of energy. The control of the line side inverter has the goal of ensuring a smooth control of the voltage in the DC link and providing sinusoidal current in the network. The simulation results indicate that the generation system can operate at its optimal point, and energy quality can be improved.  References 8, figures 4, table 1.

https://doi.org/10.15407/techned2018.05.052
ARTICLE_11_PDF (Українська)

References

Gaillard A., Poure P., Saadate S., Machmoum M. Variable speed DFIG wind energy system for power generation and harmonic mitigation. Renewable Energy. 2009. No 34. Pp. 1545–1553. DOI: https://www.doi.org/10.1016/j.renene.2008.11.002

Boutoubat M., Mokrani L., Machmoum M. Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renewable Energy. 2013. No 50. Pp. 378–386. DOI: https://doi.org/10.1016/j.renene.2012.06.058

Pena R., Clare J.C., Asher G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings of Electric Power Applications. May 1996. Vol. 143. No 3. Pp. 231–241. DOI: https://www.doi.org/10.1049/ip-epa:19960288

Todeschini G., Emanuel A. Transient response of a wind energy conversion system used as active filter. IEEE Trans. Energy Convers. 2011. Vol. 26. No 2. Pp. 522–531. DOI: https://doi.org/10.1109/TEC.2010.2086460

Shapoval I., Clare J., Chekhet E. Experimental study of a matrix converter excited doubly-fed induction machine in generation and motoring. Proc. of 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008). Poznan (Poland), 1–3 Sept. 2008. Pp. 307–312. DOI: https://doi.org/10.1109/EPEPEMC.2008.4635283

Artemenko M.Yu., Batrak L.M., Polishchuk S.Y., Mykhalskyi V.M., Shapoval I.A. Minimization of Cable Losses in Three-Phase Four-Wire Systems by Means of Instantaneous Compensation with Shunt Active Filters. Proceedings of IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO 2013). 2013. Рp. 359–362. DOI: https://doi.org/10.1109/ELNANO.2013.6552031

Abad, G., Lopez, J., Rodriguez, M., Marroyo L., Iwanski G. Doubly fed induction machine: modeling and control for wind energy generation. New Jersey: Wiley, Hoboken, 2011. 625 p. DOI: https://www.doi.org/10.1002/9781118104965

Peresada S., Tilli A., Tonielli A. Power control of doubly fed induction machine via output feedback. Control Engineering Practice. Jan. 2004. Vol. 12. No 1. Pp. 41–57. DOI: https://doi.org/10.1016/S0967-0661(02)00285-X

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 254 | PDF Downloads: 33

Downloads

Download data is not yet available.