PARAMETRIC MODEL OF RESISTANCE OF PLASMA-EROSIVE LOAD, ADEQUATE IN THE WIDE RANGE OF CHANGE OF APPLIED VOLTAGE
ARTICLE_1_PDF (Українська)

Keywords

plasma-erosive load
discharge current
parametric model
the adequacy
dimensions of plasma-erosive particles плазмоерозійне навантаження
розрядний струм
параметрична модель
адекватність
розміри плазмоерозійних частинок

How to Cite

[1]
Shydlovska, N. et al. 2017. PARAMETRIC MODEL OF RESISTANCE OF PLASMA-EROSIVE LOAD, ADEQUATE IN THE WIDE RANGE OF CHANGE OF APPLIED VOLTAGE. Tekhnichna Elektrodynamika. 2017, 3 (May 2017), 003. DOI:https://doi.org/10.15407/techned2017.03.003.

Abstract

In the present article advantages of parametrical models of plasma-erosive loads are considered. Dependence of duration of modes of a discharge current on amplitude of pulses of the applied voltage is investigated. The parametrical model of resistance of plasma-erosive load, adequate in a wide range of changes of the applied voltage is developed. Dependence of its factors on amplitude of pulses of the applied voltage is investigated. Influence of parameters of discharge pulses on average value of the sizes of plasma-erosive particles is considered. The new method of a tentative estimation of optimum ranges of change of amplitude of pulses of voltage for production of plasma-erosive particles small or big sizes is offered. The method is based on construction of functional of the sums of the factors of parametrical model of resistance of plasma-erosive load weighed on their maximum value and a finding and the analysis of his local maxima and minima. References 17, figures 4, table 1.

https://doi.org/10.15407/techned2017.03.003
ARTICLE_1_PDF (Українська)

References

Goronovskiy I.S. Radio Circuits and Signals. – Moskva: Radio i sviaz, 1986. – 512 p. (Rus)

Zakharchenko S.N., Kondratenko I.P., Perekos A.E., Zalutsky V.P., Kozyrsky V.V., Lopatko K.G. The Influence of Discharge Pulses Duration in a Layer of Iron Granules on the Sizes and a Structurally-Phase Condition of its Electric-erosive Particles // Vostochno-Evropeiskii zhurnal peredovykh tekhnologii. – 2012. – Vol. 6. – No 5 (60). – Pp. 66–72. (Rus)

Course of General Physics for Naturalists. Molecular Physics and Thermodynamics / A.V. Barmasov, V.E. Kholmogorov. – Sankt-Peterburg: BHV-Peterburg, 2009. – 512 p. (Rus)

Podoltsev A.D., Suprunovskaya N.I. Modeling and the analysis of electric discharge processes in nonlinear RLC-circuits // Tekhnichna Elektrodynamika. Tematychnyi vypusk "Problemy suchasnoi elektrotekhniky". – 2006. – Vol. 4. – Pp. 3–8. (Rus)

Riser Yu.P. Physics of the Discharge in Gas. – Мoskva: Nauka, 1987. – 592 p. (Rus)

Trubnikov B.A. The Theory of Plasma. – Мoskva: Energoatomizdat, 1996. – 461 p. (Rus)

Ushakov V.Ja. Pulse Electric Breakdown of Liquids. – Tomsk: Izdatelstvo Tomskogo Universiteta, 1975. – 256 p. (Rus)

Physical Foundations of Electrical Engineering. – Мoskva-Leningrad: Gosudarstvennoe energeticheskoe izdatelstvo, 1950. – 556 p. (Rus)

Tsidelko V.D., Yaremchuk N.A. Measurement Uncertainty. Data Processing and Presentation of the Measurement Result. – Kyiv: Polіtekhnіka, 2002. – 176 p. (Ukr)

Shydlovskaya N.A., Zakharchenko S.N., Cherkassky A.P. The Analysis of Electromagnetic Processes in Output Circuit of the Generator of Discharge Pulses with Non-linear Model of Plasma-erosive Load at Change Their Parameters in Wide Ranges // Tekhnichna Elektrodynamika. – 2016. – No 1. – Pp. 87–95. (Rus) DOI: https://doi.org/10.15407/techned2016.01.087

Shydlovskaya N.A., Zakharchenko S.N., Cherkassky A.P. Non-linear-parametrical Model of Electrical Resistance of Conductive Granulated Media for a Wide Range of Applied Voltage // Tekhnichna Elektrodynamika. – 2014. – No 6. – Pp. 3–17. (Rus)

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads // Tekhnichna Elektrodynamika. – 2017. – No 2. – Pp. 5–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005

Shcherba A.A., Zakharchenko S.N., Yatsyuk S.A., Kucheryava I.N., Lopatko K.G., Aftandilyants E.G. Analysis of the Methods of Increasing the Efficiency of Electric-erosive Coagulation During Cleaning of Aqueous Media // Tekhnichna Elektrodynamika. Tematychnyi vypusk "Sylova elektronika ta enerhoefektyvnist". – 2008. – Part. 2. – Pp. 120–125. (Rus)

Shcherba A.A., Podoltsev A.D., Kucheryava I.N. Studying Erosive Destruction of Materials by Electric Spark Treatment of Conductive Granular Media // Tekhnichna Elektrodynamika. – 2006. – No 1. – Pp. 3–10. (Rus)

Berkowitz A.E., Hansen M.F., Parker F.T., Vecchio K.S., Spada F.E., Lavernia E.J., Rodriguez R. Amorphous soft magnetic particles produced by spark erosion // J. Magn. Magn. Mater. – 2003. – No 1. – Pp. 254–255.

Berkowitz A.E., Walter J.L. Spark Erosion: A Method for Producing Rapidly Quenched Fine Powders // Journal of Materials Research. – 1987. – No 2. – Pp. 277–288.

Shcherba A.A., Podoltsev A.D., Kucheryava I.N. Spark erosion of conducting granules in a liquid: analysis of electromagnetic, thermal and hydrodynamic processes // Tekhnichna Elektrodynamika. – 2004. – No 6. – Pp. 4–16.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 372 | PDF Downloads: 61

Downloads

Download data is not yet available.