APPLICATION OF INVERS PROBLEM SOLUTIONS OF THE LINEAR AUTOREGRESSIVE PROCESSES FOR POWER EQUIPMENT VIBROMONITORING
ARTICLE_14_PDF (Українська)

Keywords

linear autoregressive process
characteristic function
kernel of transformation
generative process
infinitely-divisible distributions
, negative binomial distribution
vibration diagnosis of rolling bearings линейный процесс авторегрессии
характеристическая функция
ядро преобразования
по- рождающий процесс
безгранично-делимый закон распределения
отрицательное биномиальное распределение
вибродиагностика подшипников качения

How to Cite

[1]
Зварич, В. 2016. APPLICATION OF INVERS PROBLEM SOLUTIONS OF THE LINEAR AUTOREGRESSIVE PROCESSES FOR POWER EQUIPMENT VIBROMONITORING. Tekhnichna Elektrodynamika. 2 (Mar. 2016), 083. DOI:https://doi.org/10.15407/techned2016.02.083.

Abstract

A method for finding the characteristic function of the generating process for a linear autoregressive process with a negative binomial distribution is considered. To solve such a problem, which is called the inverse problem, the properties of the characteristic function of a stationary linear random process of autoregression are used, which can be represented both in the Kolmogorov canonical form and in the form of a linear random process with discrete time, as well as the transformation kernel for such a process. An example of finding a characteristic function for a second-order linear autoregressive process with a negative binomial distribution is presented. The application of the obtained results to find the characteristic function of the vibration signal of a wind generator is shown. References 14, figure 1.

https://doi.org/10.15407/techned2016.02.083
ARTICLE_14_PDF (Українська)

References

Zvarich V.N., Marchenko B.G. Linear processes of autoregression in vibrodiagnostics problems // Problemy Prochnosti i Nadezhnosti Mashin. – 1994. – No 3. – Pp. 96-106. (Rus)

Zvarich V.N., Marchenko B.G. Generating process characteristic function in the model of stationary linear AR-gamma process // Izvestiia VUZov/ Radioelektronika. – 2002. – Vol. 45. – No 8. – Pp. 12-18. (Rus)

Zvarich V. Application of autoregressive methods for wind power generators vibrodiagnostics systems // Vidnovliuvana enerhetyka. – 2005. – No 1. – Pp. 49-54. (Rus)

Krasilnikov A.I. Models of Noise-type Signals at the Heat-and-Power Equipment Diagnostic Systems. – Kiev: OOO Poligraf-service, 2014. – 112 p. (Rus)

Lukach E. Characteristic function. − Moskva: Nauka, 1979. − 432 p.

Marchenko B. Method of Stochastic Integral Representations and their Applications in Radio-Engineering. –Kiev: Naukova Dumka, 1973. – 191 p. (Rus)

Marchenko B.G., Zvarich V., Bednyi N. Linear random processes in some problems of information signal simulation // Elektronnoe Modelirovanie. – 2001. – Vol. 23. – No 1. – Pp. 62-69. (Rus)

Stognii B., Sopel M. Fundamentals of monitoring process in electroenergy. About the concept of monitoring process // Tekhnichna Elektrodynamika. – 2013. – No 1. – Pp. 62-69. (Ukr)

Antoni J., Bonnardot F., Raad A., Badaoui M. Cyclostationary modeling of rotating machine vibration signals // Mechanical Systems and Signal Processing. – 2004. – Vol. 18. – Pp. 1285-1314.

Babak V., Filonenko S., Kornienko-Miftakhova I., Ponomarenko A. Optimization of Signal Features under Object's Dynamic Test // Aviation. – 2008. – Vol. 12. – No 1. – Pp. 10-17.

Gorodzha K.A., Myslovich M.V., Sysak R. Analysis of Spectral Diagnostic Parameters based on mathematical Model of electrical equipment's responses due to impact excitation // Pzeglad Electrotechniczny. – 2010. – Vol. P.86. – No 1. – Pp. 38-40.

Javorskyj I., Isaev I., Majewski J., Yuzefovych R. Component covariance analysis for periodically correlated random processes // Signal Processing, – 2010. – Vol. 90. – No 1. – Pp. 1083-1102

McKenzie Ed. Innovation Distributions for Gamma and Negative Binomial Autoregressions // Scandinavian Journal of Statistics. Theory and Applications. – 1987. – Vol. 14. – Pp. 79-85.

Worden K., Staszewski W.J., Hensman J.J. Natural Computing for mechanical Systems Research: A Tutorial Owerview // Mechanical Systems and Signal Processing. – 2011. – Vol. 25. – Pp. 4-11

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 29 | PDF Downloads: 9

Downloads