Abstract
A method for finding the characteristic function of the generating process for a linear autoregressive process with a negative binomial distribution is considered. To solve such a problem, which is called the inverse problem, the properties of the characteristic function of a stationary linear random process of autoregression are used, which can be represented both in the Kolmogorov canonical form and in the form of a linear random process with discrete time, as well as the transformation kernel for such a process. An example of finding a characteristic function for a second-order linear autoregressive process with a negative binomial distribution is presented. The application of the obtained results to find the characteristic function of the vibration signal of a wind generator is shown. References 14, figure 1.
References
Zvarich V.N., Marchenko B.G. Linear processes of autoregression in vibrodiagnostics problems // Problemy Prochnosti i Nadezhnosti Mashin. – 1994. – No 3. – Pp. 96-106. (Rus)
Zvarich V.N., Marchenko B.G. Generating process characteristic function in the model of stationary linear AR-gamma process // Izvestiia VUZov/ Radioelektronika. – 2002. – Vol. 45. – No 8. – Pp. 12-18. (Rus)
Zvarich V. Application of autoregressive methods for wind power generators vibrodiagnostics systems // Vidnovliuvana enerhetyka. – 2005. – No 1. – Pp. 49-54. (Rus)
Krasilnikov A.I. Models of Noise-type Signals at the Heat-and-Power Equipment Diagnostic Systems. – Kiev: OOO Poligraf-service, 2014. – 112 p. (Rus)
Lukach E. Characteristic function. − Moskva: Nauka, 1979. − 432 p.
Marchenko B. Method of Stochastic Integral Representations and their Applications in Radio-Engineering. –Kiev: Naukova Dumka, 1973. – 191 p. (Rus)
Marchenko B.G., Zvarich V., Bednyi N. Linear random processes in some problems of information signal simulation // Elektronnoe Modelirovanie. – 2001. – Vol. 23. – No 1. – Pp. 62-69. (Rus)
Stognii B., Sopel M. Fundamentals of monitoring process in electroenergy. About the concept of monitoring process // Tekhnichna Elektrodynamika. – 2013. – No 1. – Pp. 62-69. (Ukr)
Antoni J., Bonnardot F., Raad A., Badaoui M. Cyclostationary modeling of rotating machine vibration signals // Mechanical Systems and Signal Processing. – 2004. – Vol. 18. – Pp. 1285-1314.
Babak V., Filonenko S., Kornienko-Miftakhova I., Ponomarenko A. Optimization of Signal Features under Object's Dynamic Test // Aviation. – 2008. – Vol. 12. – No 1. – Pp. 10-17.
Gorodzha K.A., Myslovich M.V., Sysak R. Analysis of Spectral Diagnostic Parameters based on mathematical Model of electrical equipment's responses due to impact excitation // Pzeglad Electrotechniczny. – 2010. – Vol. P.86. – No 1. – Pp. 38-40.
Javorskyj I., Isaev I., Majewski J., Yuzefovych R. Component covariance analysis for periodically correlated random processes // Signal Processing, – 2010. – Vol. 90. – No 1. – Pp. 1083-1102
McKenzie Ed. Innovation Distributions for Gamma and Negative Binomial Autoregressions // Scandinavian Journal of Statistics. Theory and Applications. – 1987. – Vol. 14. – Pp. 79-85.
Worden K., Staszewski W.J., Hensman J.J. Natural Computing for mechanical Systems Research: A Tutorial Owerview // Mechanical Systems and Signal Processing. – 2011. – Vol. 25. – Pp. 4-11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Array