FLEXIBLE CONTROL OF THE EXPORT POWER FLOWS BY USING DC LINK
ARTICLE_8_PDF

Keywords

frequency
power flow
direct current link
automatic generation control
interconnected power system
simulation частота
перетік потужності
вставка постійного струму
система автоматичного регулювання частоти потужності
об’єднана енергосистема
моделювання

How to Cite

[1]
Kyrylenko, O. et al. 2015. FLEXIBLE CONTROL OF THE EXPORT POWER FLOWS BY USING DC LINK. Tekhnichna Elektrodynamika. 2 (Mar. 2015), 064.

Abstract

The functional possibilities of modern direct current (DC) links for a power system control have been considered. The organization structure of the load frequency control in the interconnected power system of Ukraine is proposed in case of DC link construction near Khmelnitskaya nuclear power plant. The simulation results are shown in the event of the generating unit disconnection at Burshtyn thermal power plant. It is established that DC link connection to the active power controller of “Burshtyn island” allows providing the flexible control of the export power flows in alternating and direct current networks. References 10, table 1, figures 5.

ARTICLE_8_PDF

References

Kundur P. Power System stability and control, McGraw Hill. – California, 1994. – 1176 p.

Eremia M., Shahidehpour M. Handbook of electrical power system dynamics. Modeling, Stability and Control, John Wiley&Sons, 2013. – 942 p.

Vijay K. Sood. HVDC and FACTS controllers. Application of static converters in power systems. Kluwer academic publishers, Boston, 2004. – 295 p.

Dai J., Phulpin Y., Sarlette A., Ernst D. Voltage control in an HVDC system to share primary frequency reserves between non-synchronous areas. Available at: http://orbi.ulg.ac.be/handle/2268/97573. (accessed 26.08.2011)

Barsali S., Giglioli R., Poli D., Sforna M., Salvati R. The restoration of an electric power system: International survey and discussion of possible innovative enhancements for the Italian system // Electric Power Systems Research. – 2008. – Vol. 78. – Issue 2. – Pp. 239–247.

Gonzalez-Longatt F., Roldan J., Charalambous C.A.. Power Flow Solution on Multi-Terminal HVDC Systems: Supergrid Case // International Conference on Renewable Energies and Power Quality, March 2012, 6 p.

Available at: http://www.icrepq.com/icrepq'12/799-gonzalez.pdf. (access mode 28.03.2012)

Cole S., Karoui K., Vrana T.K., Fosso O.B., Curis J.B., Denis A.M., Liu C.C. A European Supergrid: present state and future challenges // 17th Power System Computation Conference, August 2011, 7 p. Available at: http://pscc.ee.ethz.ch/uploads/tx_ethpublications/sp2.pdf . (access mode 22.08.2011)

Directive # 409. About the providing of the integration project of interconnected power system of Ukraine to EU power systems. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244940610. (access mode 04.06.2014)

Kyrylenko O.V., Pavlovsky V.V., Steliuk A.O., Lukianenko L.N. The detailed simulation of the automatic generation control of IPS of Ukraine // Tekhnichna Elektrodynamika. – 2012. – № 6. – Pp. 44−50. (Ukr)

Haileselassie T.M., Uhlen K. Primary frequency control of remote grids connected by multiterminal HVDC // IEEE Power and Energy Society General Meeting. – 2010. – Pp. 1–6.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Tekhnichna Elektrodynamika

Abstract views: 398 | PDF Downloads: 21

Downloads

Download data is not yet available.