Анотація
Описано запропоновану методику прогнозування сумарного електричного навантаження обласної енергосистеми. Для моделювання технологічної складової навантаження використано засоби штучного інтелекту і авторегресійні моделі Бокса-Дженкінса. Проаналізовано переваги та недоліки прогнозних моделей різних видів, визначено оптимальний тип, архітектуру та вектор вхідних параметрів моделі для вирішення зазначеної задачі. Апробацію проведено на реальних даних обласної енергосистеми із перевагою промислового електроспоживання. Бібл.4, табл.1.
Посилання
Bodyanskiy Ye., Popov S., Rybalchenko T. Feedforward neural network with a specialized architecture for estimation of the temperature influence on the electric load // Proc. 4th International IEEE Conference "Intelligent Systems". – Varna, 2008. – Vol. I. – Pp. 714–718.
Box G., Jenkins G. Time Series Analysis: Forecasting and Control. – Мoskva: Мir, 1974.
Chernenko P., Martyniuk O., Miroshnyk V., Zaslavsky A. Two-stage verification of daily schedules electrical loads of power system with the significant part of industrial power consumption//Enerhetyka ta Elektryfikatsiia. – 2015. – No 7. – Pp. 10– 23. (Ukr)
Hippert H. S., Pedreira C. E., Souza R. C. Neural networks for short-term load forecasting: a review and evaluation // IEEE Trans. Power Systems. – 2001. – Vol. 16. – No 1. – Pp. 44-55.
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Авторське право (c) 2022 Array